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This paper is mainly concerned with the study of recurrences defined by Mo� bius-
transformations, whose solutions are the orbits of points on the Riemann-sphere
under a sequence of Mo� bius-transformations. We study the asymptotic behaviour
of such solutions in relation to the asymptotic behaviour of the coefficients of the
Mo� bius-transformations. Most of the theorems give sufficient conditions in order
that there exist converging solutions, but a section of examples is added where examples
are given of recurrences whose solutions do not converge because one or several of
the conditions of the theorems are violated. One of the most important results of
this paper is that if the fixpoints of the Mo� bius-transformations are of bounded
variation and converge to distinct limits, then the behaviour of the solutions
depends entirely on the products of the derivatives in the fixpoints. Several methods
will be proposed to deal with the case that the fixpoints converge to one single
limit. The paper starts with a few results on n th order recurrences and matrix
recurrences and concludes with an investigation of the asymptotic behaviour of the
solutions of linear second-order recurrences having coefficients that are asymptotic
expressions in fractional powers of the index n. A number of examples are added
in order to show how some of the theorems can be applied. � 1998 Academic Press

INTRODUCTION AND NOTATION

This paper is divided into ten sections. Each section begins with a discussion
of the contents of that section, so the reader who wants to have a quick
idea of what this paper is about is advised to skim through the first few
lines of each section. The remainder of this introduction serves only to
introduce some basic facts and notations that will be needed throughout
the paper, for quick reference.

First of all, the solutions of the different types of recurrences that are
the subject of this paper are sequences of numbers, vectors, or matrices
[xn]�

n�n0
. Because we are only concerned with the asymptotic behaviour of
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the solutions, the precise value of the starting index is irrelevant, and solu-
tions will be given in the form [xn], leaving out the domain of definition
of the indices. If it is necessary to specify such a domain, e.g., to indicate
hat a certain identity holds for all n, this will mostly be indicated by n # N.
A similar remark holds for sums and products, which are generally written
��

n=0 ( } } } ), etc. In a few cases, where an expression involves an infinite
sum, where the indices over which the sum extends depend on the convergence
of the sum, we shall avail ourselves of the notation �(n) , which is ��

k=n if
the sum converges, and �n&1

k=0 if the sum does not converge (see especially
Theorem 1.4).

A matrix recurrence is given by a sequence

Mnxn=xn+1 (n # N, n�N) (1.1)

with [Mn] a sequence of non-singular k_k-matrices with entries in a field K,
where K=C or R and [xn] is a sequence of k_l-matrices with rank l (l�k).
We call the sequence [xn] an l-dimensional solution of the matrix recurrence.

In addition to matrix recurrences we also study linear (kth order) recurrences,
which are given by an equation (or rather, a sequence of equations)

un+k+Pk&1(n) un+k&1+ } } } +P0(n) un=0 (1.2)

for n # N, n�N, where the Pj (n) are given sequences of numbers in the
field K and P0(n){0 for n�N. In this case, [un]n�N , with the numbers
un # K, is a solution of (1.2), and the sequence [(un+k&1 , ..., un)t]n�N

(where t denotes the transpose of a vector or matrix) is a (1-dimensional)
solution of the so-called associated matrix recurrence, defined by the Kronecker-
matrices

Mn=\
&Pk&1(n)

1
b
0

} } }
0

. . .
0

} } }
0
b
1

&P0(n)
0
b
0 + . (1.3)

A k-dimensional solution of this associated matrix recurrence is given by
a sequence of matrices whose column vectors are of the form (u(i)

n+k&1 , ..., u (i)
n )t

with [u (1)
n ], ..., [u (k)

n ] a complete set of linearly independent solutions of the
linear recurrence (1.2). In this way it is possible to translate results about
matrix recurrences into results about linear recurrences.

Finally, we give some notation concerning matrices and linear recurrences.
The notation Ik will be used to denote the identity matrix in Kk, k. If there is
no ambiguity, we shall often write I instead of Ik . We denote the ith unit
vector in Kk by ei , and for a matrix M, we let Mij be the entry in the i th
row and the jth column. If x # Kk is a vector, xt denotes the transpose of x.
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If the entries of a sequence of matrices converge to a limit matrix M, the
characteristic polynomial /(M)=det(XI&M) will, by abuse of language,
also be called the characteristic polynomial of the corresponding recurrence.
Similarly for a linear recurrence (1.2): if the coefficients Pj (n) converge to
numbers Pj as n � �, the characteristic polynomial of the recurrence will
be /(X)=Xk+Pk&1Xk&1+ } } } +P0 . Of course, if (1.1) is the associated
matrix recurrence, the characteristic polynomials of (1.1) and (1.2) will be
equal.

For a matrix M # Kk, l the norm &M& is defined as the matrix norm
induced by some vector norm on Kl:

&M&=max
x{0

|Mx|�|x|.

By diag(R1 , R2 , ..., Rm) we denote the (block-)diagonal matrix

\
R1

0
R2

. . .

0

Rm
+ ,

where the Ri are square matrices or just numbers in K.
In Theorems 1.1 and 1.2 we use the notation M to denote the set of

functions F: N � R>0 such that f (n)� f (m) is bounded from above for all
n>m�n0 and such that limn � � f (n+1)� f (n)=1. As an example, f (n)=1
and F(n)=n&a(log n)b with a, b # R, a>0 belong to M.

Lastly, we adopt the following convention: if >�
n=n0

*n=0 (or �) for
numbers *n # K, this will imply that the products > p

n=m |*n | are bounded
from above (below) for all p�m�n0 . We shall see that this is a natural
convention (e.g., compare Example 9.1).

1. MATRIX RECURRENCES AND NTH ORDER RECURRENCES

Although the bulk of this paper is concerned with sequences of Mo� bius-
transformations, we shall avail ourselves of the opportunity to state and
prove a few results on matrix recurrences and n th order linear recurrences.
In the remainder of the paper these will only be used for recurrences of
order two, but since the results are valid for any order, we may as well
state them in a more general context. The first result (Theorem 1.2) is an
interesting generalization of the well-known Poincare� �Perron Theorem
([13, 15]; for its statement see the remark after the proof of Theorem 1.2)
for linear recurrences of order n>1. It states that if the coefficients of a

3SOLUTIONS OF LINEAR RECURRENCES
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linear recurrence converge and the characteristic polynomial has l zeros
whose moduli are equal to a certain number A, then the recurrence has a
basis of l solutions that satisfy a linear recurrence of order l with charac-
teristic polynomial (X&A) l. The two other theorems of the first section
are, first, a useful result that states to what extent the solutions of a matrix
recurrence whose matrices are almost diagonal resemble the solutions of
a matrix recurrence whose matrices are diagonal matrices (Theorem 1.4).
The proof of this theorem will be given in Section 2. The first application
of this result on almost-diagonal matrices is the third theorem of the first
section (Corollary 1.6) which states that if the zeros of the characteristic
polynomial are distinct, and the coefficients are of bounded variation, then
the Poincare� �Perron Theorem is true for this case too (provided that some
minor additional condition is met). We conclude the first section with another
example that shows how Theorem 1.4 can be applied to matrix recurrences
whose coefficients converge fast.

We proceed to the first theorem.

Theorem 1.1. Let M=diag(R1 , R2 , ..., RL), with Rj # Kkj , kj such that all
complex eigenvalues of Rj have smaller moduli than those of Rj+1 ( j=1, ..., L&1).
Let f # M such that limn � � f (n) # R and [Mn] a sequence of matrices in
Kk, k such that

&Mn&M&=o( f (n)) (n � �).

Then there exists a sequence [Gn] of non-singular matrices in Kk, k such that

G&1
n+1Mn Gn=diag(R1n , R2n , ..., RLn)

with limn � � Rjn=Rj and

&Rjn&R$jn&=o(&Mn&M&) (n � �; j=1, ..., L),

where R$jn is the submatrix of Mn composed of the same rows and columns
as Rj in M. Further

lim
n � �

Gn=I

and

&Gn&I&=o( f (n)) (n � �).

Moreover, if ��
n=N 1� f (n) } &Mn&M& converges, then [Gn] can be found

such that ��
n=N 1�f (n) } &Gn&I& converges as well.

4 R. J. KOOMAN
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Proof. See Theorem 3.1 of [6].

Here follows the corresponding result for linear recurrences.

Theorem 1.2. Consider the linear recurrence given by (1.2) with charac-
teristic polynomial /(X)=(X&:1) } } } (X&:k), where :1 , ..., :k # C, |:1 |= } } }
=|:l | and |:1 |{|:j | for l< j�k. Let f # M such that limn � � f (n) # R and
Pj&Pj (n)=o( f(n)) (n � �; j=0, ..., k&1). Then (1.2) has l linearly independent
solutions [u(i)

n ] such that

u (i)
n+l+bl&1(n) u (i)

n+k&1+ } } } +b0(n) u (i)
n =0 (i=1, ..., l ), (1.4)

where bj (n) # K (n # N) and bj&bj (n)=o( f (n)) (n � �; j=0, ..., l&1) for
numbers b0 , ..., bl&1 # K defined by

Xl+ :
l&1

j=0

bjX j=(X&:1) } } } (X&:l).

Moreover, if �k&1
j=0 ��

n=1 1�f(n) } |Pj (n)&Pj | converges, then �l&1
j=0 ��

n=1 1�f(n)
} |bj (n)&bj | converges as well.

Proof. Put =(n)=maxm�n max0� j�k&1 |Pj&Pj (m)| for n # N and let
the associated matrix recurrence be given by (1.3). There exists some
matrix V # Kk, k, V, non-singular, such that V &1MV=diag(R, S) where
M=lim Mn and R and S # Kl, l have eigenvalues :1 , ..., :l and :l+1 , ..., :k ,
respectively in C. It follows from Theorem 1.1 that there exists a sequence
[Gn], Gn # Kk, k, with

&Gn&I&=o( f (n)) (n � �)

and

&G&1
n+1V &1Mn VGn&V &1MV&=o(=(n)) (n � �)

such that

G&1
n+1V &1Mn VGn=diag(Rn , Sn) (n # N),

where lim Rn=R, lim Sn=S. Let Yn # Kl, l be such that RnYn=Yn+1 and
det Yn {0 and let Xn=(Yn , 0)t # Kk, l for all n. Then [Un]=[VGnXn] is
an l-dimensional solution of (1.1). Let /(X)=Xl+�l&1

j=0 bjX j be the
characteristic polynomial of R. Clearly, / # K[X] and /(R)=0 by the
Cayley�Hamilton Theorem. Hence,
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/(M) Un =V } diag(/(R), /(S)) } Gn } Xn

=W } /(S) } $(n) } Xn

=W } /(S) } $(n) } G&1
n } V&1 } Un

=Dn Un (n # N), (1.5)

where W is the matrix composed of the last k&l columns of V, $(n) # Kk&l, k

is the matrix composed of the last k&l rows of Gn&I (in fact, the last k&l
columns of $(n) are irrelevant and can even be taken zero), and Dn # K k, k,
&Dn &=O(&Gn&I&) (n # N). Equation (1.5) implies that

:
l

j=0

bjUn+ j+En Un=0, (1.6)

where bl=1, En # Kk, k, &En&=O(=(n)+&Gn&I&) for n � �. On evaluating
the lower k&l rows of (1.6), we obtain k&l equations for l linearly indepen-
dent solutions [u (i)

n ] of (1.2)

:
l

j=0

bju (i)
n+ j+ :

k

j=1

(En)kju (i)
n+k& j=0

b

:
l

j=0

bju (i)
n+k&l&1+ j+ :

k

j=1

(En) l+1, ju (i)
n+k& j=0.

Since bl=1, the last equation enables us to express u (i)
n+k&1 as a linear

combination of u (i)
n , ..., u (i)

n+k&2 with bounded coefficients, which do not
depend on i. Substituting the expression for u (i)

n+k&1 into the first k&l&1
equations, we obtain k&l&1 equations

:
l

j=0

bju (i)
n+ j+ :

k

j=2

(E$n)kj u (i)
n+k& j=0

b

:
l

j=0

bju (i)
n+k&l&2+ j+ :

k

j=2

(E$n) l+2, j u (i)
n+k& j=0,

where &E$n&=O(=(n)+&Gn&I&). We can repeat the above procedure, using
the last of the k&l&1 equations in order to obtain an expression for u (i)

n+k&2

6 R. J. KOOMAN
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as a linear combination of u (i)
n , ..., u (i)

n+k&3 with bounded coefficients.
Repeating this procedure until only one equation is left we find that

:
l

j=0

bju (i)
n+ j+ :

k

j=k&l

(E (k&l&1)
n )kj u (i)

n+k& j=0

for i=1, ..., l and

&E (k&l&1)
n &<c } (=(n)+&Gn&I&)=o( f (n)) (n � �)

for some constant c. Q.E.D

In particular, if we have l=1, in other words, if the characteristic poly-
nomial has an eigenvalue : with multiplicity one and such that all other
eigenvalues have moduli {|:|, Theorem 1.2 states that there exists a solution
[un] of (1.2) with

un+1&(:+$(n)) un=0

with $(n)=o( f (n)) for n � �, so that un+1 �un&:=o( f (n)) (n � �). If, in
addition, ��

n=1 1�f (n) } |Pi (n)&Pi | converges for i=0, ..., k&1, then, by
Theorem 1.2, ��

n=0 1�f (n) } |$(n)| converges as well. Using that f # M, we
then have that ��

k=n |$(k)|<c } ��
k=n ( |$(k)|�f (k)) } f (n)=o( f (n)) for some

constant c. Hence, if :{0, then

un=u0 :n `
n&1

h=0

(1+$(h)�:),

so that un�:n converges and, for a suitable choice of u0 ,

un

:n &1=o( f (n)) (n � �)

and, for :=0, it follows that

:
�

n=1

1
f (n)

} } un+1

un }<�.

Remark. If all zeros :1 , ..., :k of / have distinct moduli, then there is a
basis of solutions [u(i)

n ] of (1.2) (i=1, ..., k) such that for all i, limn � �(u(i)
n+1�u (i)

n )
=:i . This is the original Poincare� �Perron Theorem (see [13, 15] for
the original papers and see, for the corresponding matrix version [5, 6]
or [9]). Moreover, in [3] Gelfond and Kubenskaya proved that if in (1.2),
Pj&Pj (n)=O(;(n)) for some real function ; with limn � � ;(n+1)�;(n)=1
and ��

n=0 ;(n)<�, and the characteristic polynomial / has zeros :1 , ..., :k

which are nonzero and have distinct moduli, then there are solutions [u (i)
n ]

7SOLUTIONS OF LINEAR RECURRENCES
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with u (i)
n =:n

i (1+O(��
h=n ;(n))). We show that this follows from Theorem

1.2 as well: clearly ; # M. Let f # M such that ;(n)=o( f (n)). We have just
seen that there exists, for every zero : of / such that |:|{|:$| for :$ any
other zero of /, some solution [un] of (1.2) such that un+1�un&:=o( f (n)).
Since f is arbitrary, we must have un+1 �un&:=O(;(n)). Hence un=
C } :n >n&1

h=0 (1+O(;(h))) for some constant C. Since >�
h=0 (1+O(;(h)))

converges, we have, for a suitable value of C,

un =:n `
�

h=n

(1+O(;(h)))

=:n \1+O \ :
�

h=n

;(h)++ (n # N).

In fact, the result we get is somewhat stronger: if : is a zero of / such that
the modulus of : is distinct from the moduli of the other zeros of /, then
there is a solution un=:n(1+O(��

h=n ;(h))).

Theorem 1.2 in a sense reduces the case that the linear recurrence (1.2)
has converging coefficients to the case that all eigenvalues of the charac-
teristic polynomial have equal moduli.

Subsequently we state and prove a result for the case that all zeros of the
characteristic polynomial are distinct. On the one hand, this condition is
weaker than the condition in the Poincare� �Perron Theorem, which requires
that all zeros have distinct moduli. On the other hand, we have to impose
additional conditions on the coefficients, because in general it is not true
in this case that a basis [u (1)

n ], ..., [u (k)
n ] of solutions exists such that

limn � �(un+1 �un)=:i for all zeros :i (see Example 9.3 and Section 10). In
fact, we require only that the coefficients of the recurrence are of bounded
variation (this condition was also used in work on orthogonal polynomials,
e.g., [10, 11, 17]). We first prove the result in a somewhat more general setting,
i.e., for matrix recurrences.

Theorem 1.3. Let [Mn] be a sequence of non-singular k_k-matrices
with coefficients in the field K=R or C, such that M=limn � � Mn exists
and has eigenvalues :1 , ..., :k which are all distinct and such that the products
of quotients

`
M

h=m }
:i (h)

:i+1(h) } (1.7)

are bounded from above for all m, M and i=1, ..., k&1, where :1(n), ..., :k(n)
are the eigenvalues of Mn that converge to :1 , ..., :k , respectively. Further

8 R. J. KOOMAN
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suppose that �n &Mn&Mn+1& converges. Then there exists a sequence [Gn],
Gn # Kk, k, such that limn � � Gn=G, det G{0, and

G&1
n+1MnGn=diag(:1(n), ..., :k(n)) (n # N)

if neither of the :i is zero, and

G&1
n+1Mn Gn=diag(:1(n)+$n , ..., :k(n)) (n # N)

if :1=0, for numbers $n=O(&Mn&Mn+1&).

For the proof we use the following auxiliary results:

Theorem 1.4. Let [An]=[diag(a1(n), ..., ak(n))] be a sequence of diagonal
non-singular matrices in Kk, k such that for all m and p large enough the quotients
> p

h=m |ai (h)�aj (h)| are bounded from above for all i< j and let [Dn] be a
sequence of matrices in Kk, k such that An+Dn is non-singular for all n and
��

n=0 (&Dn&�|aj (n)| )<� for all j>L�0, j�k. Then there exists a sequence
[Gn], Gn # Kk, k with

lim
n � �

Gn=Ik

and

G&1
n+1 } (An+Dn) } Gn=diag(Pn+ZnRn , aL+1(n), ..., ak(n)) (n # N),

(1.8)

where Pn # KL, L is the matrix that consists of the first L rows and columns
of An+Dn , Rn # Kk&L, L is the matrix that consists of the last k&L rows
and the first L columns of An+Dn , and where Zn is a L_(k&L) matrix
with

&Zn&�C$ } :
n

h=0

&Dh&
|aL+1(h)|

`
n

j=h+1
} aL( j)
aL+1( j) }

=
&Dn &

|aL+1(n)|
O(1)+ } aL(n)

aL+1(n) } O(1)

for some constant C$. Furthermore,

&Gn&I&�C } max
i, j

`
n&1

h=0
} ai (h)
aj (h) } } :

(n)

&Dl&
|aL+1(l )|

`
l

q=0
} aj (q)
ai (q) } (1.9)

for some constant C independent of n # N, where the maximum is taken over
all pairs (i, j) such that at least one of the i, j is greater than L.

9SOLUTIONS OF LINEAR RECURRENCES
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Proof. See Section 2.

In this paper, we shall apply Theorem 1.4 only for L=0 or L=1, as in
Corollary 1.6 and in Theorem 7.1. After Corollary 1.6, at the end of this
section, we shall apply Theorem 1.4 to the case that the matrices An are
constant.

Lemma 1.5. Let /n(X )=�k
j=0 Pj (n) X j be a sequence of monic polyno-

mials converging to /(X)=(X&:1) } } } (X&:k), where :1 , ..., :k are pairwise
distinct complex numbers. If ��

n=0 |Pj (n)&Pj (n+1)| converges for j=0, ...,
k&1, then there exist k sequences of complex numbers :i (n) such that
/n(:i (n))=0, limn � � :i (n)=:i and �:

n=1 |:i (n)&:i (n+1)| converges
(n # N, i=1, ..., k).

Proof. Since the zeros of a monic polynomial depend continuously on
the coefficients we see that for n large enough, /n has zeros :1(n), ..., :k(n)
such that

|:i&:i (n)|< 1
2 min

i{ j
|:i&:j |.

We show that ��
n=0 |:i (n)&:i (n+1)| converges for all i. Fix i # [1, ..., k].

Clearly, /n(:i (n))=0 (n # N), we have

:i (n+1)&:i (n)=
/n(:i (n+1))&/n+1(:i (n+1))

�1
0 /$n(t:i (n+1)+(1&t) :i (n)) dt

.

Since / is monic and /$(:i){0, the denominator is bounded from below for
n large enough and it follows that ��

n=0 |:i (n)&:i (n+1)|<�. In
particular, :i (n) converges and, by the choice of :i (n), the limit can only
be :i . Q.E.D

Proof of Theorem 1.3. Let /n(X)=Xk+Pk&1(n) X k&1+ } } } +P0(n) be
the characteristic polynomial of Mn . Since the coefficients Pj (n) lie in the
ring generated by the entries of Mn , we have ��

n=0 |Pj (n)&Pj (n+1)|<�
for 0� j�k&1. By Lemma 1.5, we conclude that /n has zeros :1(n), ...,
:k(n) such that ��

n=0 |:i (n)&:i (n+1)| converges and limn � � :i (n)=:i

(i=1, ..., k). Define sequences of eigenvectors f1(n), ..., fk(n) of Mn such
that Mn fi (n)=:i (n) fi (n) and such that fi (n) converges to fi , an eigenvector
of M with eigenvalue :i . In fact, because the rank of Mn&:i (n) Ik is k&1
there is some limn �� +lj(n){0, where +lj(n) is the cofactor of (Mn&:i (n) Ik)lj .
We can now take

fi (n)=(+lj (n))&1 (+l1(n), ..., +lk(n))t.

Then it is clear that ��
n=0 | fi (n)& fi (n+1)| converges.

10 R. J. KOOMAN
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Put G� n=( f1(n), ..., fk(n)). Then lim G� n=G, with G a matrix of eigen-
vectors for M and G� &1

n MnG� n=diag(:1(n), ..., :k(n)). Moreover,

:
�

n=0

&G� &1
n+1G� n&I&<c } :

�

n=0

&G� n+1&G� n &<�,

for some constant c, so that G� &1
n+1MnG� n=diag(:1(n), ..., :k(n))+Dn ,

where &Dn &=O(&Mn&Mn+1 &) whence ��
n=0 &Dn&<�. Application of

Theorem 1.4 (for L=0) immediately yields the desired result. Q.E.D

Corollary 1.6. Consider the linear recurrence (1.2). Suppose that
��

n=0 |Pj (n)&Pj (n+1)| converges for j=0, ..., k&1, and that the zeros
:1(n), ..., :k(n) of the characteristic polynomials /n(X )=Xk+Pk&1(n) Xk&1

+ } } } +P0(n) converge to distinct complex numbers :1 , ..., :k , and that the
quotients (1.7) are bounded from above. Then there exists a basis of solutions
[u (1)

n ], ..., [u (k)
n ] of (1.2) such that for i=1, ..., k if :i {0,

u (i)
n =(1+o(1)) `

n&1

h=0

:i (h) (n # N),

and if :i=0, then

u (i)
n+1

u (i)
n

=(:i (n)+O(d(n)))(1+o(1)),

where d(n)=�k&1
j=0 |Pj (n)&Pj (n+1)|.

Proof. Consider the associated matrix recurrence Mnxn=xn+1, where
the Mn are given by (1.3). By Theorem 1.3, there exists a sequence of
matrices [Un], such that

U &1
n+1MnUn=diag(:1(n), ..., :k(n))

if none of the :i are zero, whereas if, say, :1=0, then

U &1
n+1MnUn=diag(:1(n)+O(d(n)), ..., :k(n))

and where Un converges to U, a matrix of eigenvectors for M. One-
dimensional solutions of the associated matrix recurrence are of the form
(un+k&1 , ..., un)t, with [un] a solution of (1.2). For all i, we set y (i)

n =
(>n&1

h=0 (U &1
h+1 MhUh) ii) ei , where ei is the i th unit vector. If :i {0, then
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y(i)
n =(>n&1

h=0 :i (h)) ei , and if :i=0, then y (i)
n =(>n&1

h=0 (:i (h)+O(d(h)))) ei .
Clearly, [Un y (i)

n ] is a solution of the associated matrix recurrence. Further,

Un ei=ci (1+o(1)) } (:k&1
i , ..., :i , 1)t (i=1, ..., k)

for some non-zero constant ci . This completes the argument. Q.E.D

Condition (1.7), which figures in both Theorem 1.4 and Corollary 1.6,
cannot be dispensed with, as will be shown in Example 9.1. On the other
hand, in practice, it is almost always satisfied (for an example, see Section 10).

Before concluding this section on matrix recurrences, we shall, as an
example, show how Theorem 1.4 can be applied to obtain the following
result of Evgrafov [2].

Consider a linear recurrence (1.2) with ��
n=0 |Pj (n)&Pj |<�, where

Pj=limn � � Pj (n). If the characteristic polynomial has zeros :1 , ..., :k with
0<|:1 |� } } } �|ak |, then (1.2) has solutions u(i)

n =:n
i (1+o(1)).

One of the reasons we give this example is to show how formula (1.9)
applies. In fact, we prove even more, giving an estimate for the order of
convergence of u (i)

n �:n
i , in the same way as we did above (see the remark

after Theorem 1.2).

Proposition 1.7. Let :1 , ..., :k be non-zero, not necessarily distinct
numbers with |:1 |� } } } �|:k | and let ;: N � R>0 be a function such that
limn �� ;(n)=0, ��

n=0 ;(n)<�, and 0<max|:i�:i+1 |<lim inf(;(n+1)�;(n))
�1 where the maximum is taken over those i such that |:i |{|:i+1 |. Let Dn

be matrices with &Dn&=O(;(n)). The matrix recurrence

(diag(:1 , ..., :k)+Dn) xn=xn+1 (n # N) (1.10)

has solutions [x (i)
n ] with

x(i)
n =:n

i ei \1+O \ :
�

h=n

;(h)++
for i=1, ..., k.

For the proof we need the following fact:

Lemma 1.8. Let ` # R and ;: N � R>0 a function such that limn � � ;(n)
=0 and 0<`<lim inf(;(n+1)�;(n))�1. Then

:
n&1

h=0

;(h) `n&h=O(;(n)).

12 R. J. KOOMAN
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Proof. Set A=maxn ;(n) and let N be so large that ;(n+1)�;(n)>'
for n�N, and some number `<'<1. Choose n�N. Since `n�;(n) � 0
(n � �),

1
;(n)

:
n&1

h=N

;(h) } `n&h+
1

;(n)
:

N&1

h=0

;(h) } `n&h

� :
n&1

h=N \
`
'+

n&h

+
A`n

;(n)
:

N&1

h=0

`&h=O(1). Q.E.D.

Proof of Proposition 1.7. By Theorem 1.4 there exist matrices Gn ,
converging to the identity matrix, such that

G&1
n+1(diag(:1 , ..., :k)+Dn) Gn=diag(:1 , ..., :k)

and

&Gn&I&�C } max
ij

Tij (n) :=C } max
i, j } :i

:j }
n

} :
(n)

;(h) } :j

:i }
h+1

for all n and 1�i, j�k. We show that Tij (n)=O(��
h=n ;(h)). Let ` be

such that max( |:i |�|:i+1 |)<`<lim inf(;(n+1)�;(n))�1, where the
maximum is taken over those i such that |:i |{|:i+1 |. For j<i, Tij (n)<
��

h=n ;(h) `h&n+1. If j>i and ��
h=0 ;(h) |:j�:i |

h converges, then Tij (n)=
O(`n)=O(;(n)). If the sum does not converge, then Tij (n)<�n&1

h=0 ;(h) `n&h&1

=O(;(n)), by Lemma 1.8. If i= j, then Tij (n)=O(��
h=n ;(h)). Hence we

see that

&Gn&I&=O \:
i, j

Tij (n)+=O \ :
�

h=n

;(h)+ .

Hence the matrix recurrence

(diag(:1 , ..., :k)+Dn) xn=xn+1

has solutions

x (i)
n =:n

i Gnei=:n
i ei \1+O \ :

�

h=n

;(h)++
for i=1, ..., k. Q.E.D

As in Corollary 1.6 we can apply the result, which is a result for matrix
recurrences, to linear recurrences (1.2) by way of the associated matrix
recurrence. The fact that we can require that lim inf(;(n+1)�;(n))>
max( |:i |�|:i+1 |) instead of ;(n+1)�;(n) � 1 as n � � was first seen by
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Coffmann [1] who showed that the result of Gelfond�Kubenskaya (see the
remark after Theorem 1.2) holds under this weakened condition. Notice
that Proposition 1.7 in fact combines the results of [2, 3].

2. THE PROOF OF THEOREM 1.4

Theorem 1.4 tells us to what degree the entries of a sequence of diagonal
matrices [Mn] may be perturbed in order that the solutions of the matrix
recurrence (1.1) Mn xn=xn+1 and the solutions of the ``perturbed matrix
recurrence'' (Mn+Dn) yn= yn+1 are asymptotically equal. Namely, if a
sequence [Gn] converging to the identity matrix can be found such that
G&1

n+1(Mn+Dn) Gn=Mn for n�0, then, for [xn] a solution of the unper-
turbed recurrence (1.1), [ yn]=[Gnxn] is a solution of the perturbed matrix
recurrence. Then, by &Gn&I&=o(1), we have yn=xn(1+o(1)).

We proved a somewhat less general version of Theorem 1.4 in [6,
Lemma 4.1], but on the one hand we need the more general version in
Section 7 and, on the other hand, this gives us the opportunity to repair a
small flaw in the proof of the original version. We begin by stating a lemma
that will be used in the proof (and which plays about the same role as does
Lemma 4.2 of [6]).

Lemma 2.1. Let *n , bn be complex numbers such that > p
n=m |*n | is

bounded either from above or from below for all m and p and ��
n=0 |bn |

converges. Then for all solutions [ yn] of the recurrence

yn+1=*n yn+bn (n # N) (2.1)

the estimate

| yn |� `
n&1

q=n0

|*q | } { | yn0
|+ :

n&1

l=n0

|bl | \ `
l

h=n0

|*h | &1+= (2.2)

holds. Moreover, (2.1) has a solution [wn] such that limn � � wn=0 and

|wn |� `
n&1

q=n0

|*q | } :
(n)

|bl | \ `
l

h=n0

|*h | &1+ (n�n0), (2.3)

where �(n)=�n&1
l=n0

if the sum ��
l=n0

diverges and �(n)=��
l=n if the sum

converges.

14 R. J. KOOMAN
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Proof. As can easily be checked, the solutions of the recurrence (2.1)
are

yn=*n&1 } } } } } *n0 \yn0
+ :

n&1

l=n0

bl (*l } } } } } *n0
)&1+ . (2.4)

Inequality (2.2) now follows immediately. If the sum on the right-hand
side converges, we take wn0

=&��
l=n0

bl (*l } } } } } *n0
)&1, whence

wn=&*n&1 } } } } } *n0
:
�

l=n

bl (*l } } } } } *n0
)&1, (2.5)

which tends to zero, if *n&1 } } } } } *n0
is bounded from above. If *n&1 } } } } } *n0

is not bounded from above, it is bounded from below, and in that case wn

also tends to zero, by

wn=& :
�

l=n

bl (*l } } } } } *n)&1.

The estimate (2.3) follows immediately. If the sum on the right-hand side
diverges, we must have >�

h=n0
*h=0 (otherwise the products >l

h=n0
|*h |&1

would be bounded from above). Choose wn0
=0. Again, (2.3) is immediate,

and

|wn |� `
n&1

q=n0

|*q | } :
n1&1

l=n0

|bl | } \ `
l

h=n0

|*h |&1++ :
n&1

l=n1

|bl | } `
n&1

h=l+1

|*h | ,

where n1 is chosen such that ��
h=n1

|bh |<= for some fixed =>0. The first
term on the right-hand side converges to zero as n goes to infinity, whereas
the second term is bounded by a constant times =. Q.E.D

Proof of Theorem 1.4. (1) We first prove the theorem for L=0.
Set

d(n)= max
1� j�k

&Dn &
|aj (n)|

and

4n=max
i, j

`
n&1

q=0
} ai (q)
aj (q) } } :

(n)

d(l ) `
l

h=0
} aj (h)
ai (h) }, (2.6)

15SOLUTIONS OF LINEAR RECURRENCES
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where the maximum is taken over all pairs 1�i, j�k. Then ��
n=0 d(n)

converges and 4n tends to zero as n � �. Indeed, for all i, j the expression
in (2.6) on the right of maxi, j is a solution of the recurrence

yn+1= } ai (n)
aj (n) } yn+d(n) (n # N)

that tends to zero as n � �, by Lemma 2.1. Further, let c>1 be such that

1
c

&M&� max
1�i, j�k

|Aij |�c &M& (2.7)

for any matrix M # Kk, k. That such a c exists is guaranteed by the equiv-
alence of matrix norms in Kk, k. Let N # N be so large that 4n<1�20c2

for n�N. We define sequences of k_k-matrices [G ( j)
n ] as

G(0)
n =Ik (n�0)

and, for j�0, n�N,

G ( j+1)
n &Ik=G ( j)

n An&1 } } } } } AN

__G ( j+1)
N &Ik+ :

n&1

l=N

(Al } } } } } AN)&1

_(G ( j)
l+1)&1 Dl A&1

l (Al } } } } } AN)& (An&1 } } } } } AN)&1,

(2.8)

where

(G ( j+1)
N &Ik)pq=0

if the sum

:
�

l=0

d(l ) \ `
l

h=0
} aq(h)
ap(h) }+ (2.9)

diverges and

(G ( j+1)
N &Ik)pq

=&\ :
�

l=N

(Al } } } } } An)&1 (G ( j)
l+1)&1 Dl A&1

l (Al } } } } } AN)+pq

if the sum (2.9) converges.

16 R. J. KOOMAN
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We first show that [G ( j)
n ] converges to Ik as n � � and, in addition,

&G ( j)
n &Ik &<1�5 for all j�0 and n�N. For j=0 this is trivial. Suppose

it is true for G ( j)
n . In particular, it follows that &G ( j)

n &<2, &(G ( j)
n )&1&<2.

By (2.8),

|((G ( j)
n )&1 (G ( j+1)

n &Ik))pq |

� `
n&1

h=N }
ap(h)
aq(h) } } :

n

|((G ( j)
l+1)&1 DlA&1

l )pq | } `
l

h=N }
aq(h)
ap(h) } ,

where �n stands for �n&1
l=N if the sum in (2.6) diverges, and for ��

l=n if the
sum in (2.6) converges. Hence, by (2.7),

&(G ( j)
n )&1 (G ( j+1)

n &Ik)&�2c24n (2.10)

and

&G ( j+1)
n &Ik &�4c24n< 1

5 (n�N). (2.11)

It follows that G ( j+1)
n � Ik as n � �.

We now show that for n�N the sequences [G ( j)
n ]j converge to a limit.

Set Mj=supn�N &G ( j)
n &G ( j&1)

n & ( j�1). Note that M1�1�5. Further,

&(G ( j)
n )&1&(G ( j&1)

n )&1&=&(G ( j)
n )&1 (G ( j&1)

n &G ( j)
n )(G ( j&1)

n )&1&�4Mj .

Then

Mj+1�Mj } &(G( j)
n )&1 (G ( j+1)

n &Ik)&

+"G ( j&1)
n An&1 } } } } } AN \G ( j)

N &G ( j+1)
N + :

n&1

l=N

(Al } } } } } AN)&1

_((G ( j&1)
l+1 )&1&(G ( j)

l+1)&1) DlA&1
l (Al } } } } } AN)+

_(An&1 } } } } } AN)&1"
whence, by the definition of the numbers G (i)

N and by (2.7) and (2.10),

Mj+1�(2c2 max
n�N

4n+8c2 max
n�N

4n) Mj�
1
2 Mj ( j�1).

If we now set, for n�N,

Gn=G (0)
n + :

�

j=0

(G ( j+1)
n &G ( j)

n ),

17SOLUTIONS OF LINEAR RECURRENCES
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then &Gn&=&G (0)
n &+��

j=1 Mj<� and

&Gn&G (r)
n &� :

�

j=r+1

Mj�21&r�5

so that [G(r)
n ]r converges to Gn for n�N as r � �. In addition, the estimate

(2.11) holds for all G ( j+1)
n , hence for Gn . This yields (1.9). It remains to be

shown that An+Dn=Gn+1AnG&1
n . If we take limits in (2.8), letting j � �,

we find

Gn&Ik=GnAn&1 } } } } } AN \GN&Ik+ :
n&1

l=N

(Al } } } } } AN)&1

_G&1
l+1DlA&1

l (Al } } } } } AN)+ (An&1 } } } } } AN)&1 (2.12)

whence

Gn+1&Ik=Gn+1 AnG&1
n (Gn&Ik) A&1

n +DnA&1
n

so that

Gn+1An G&1
n A&1

n =Ik+DnA&1
n

and from this it is easy to see that An+Dn=Gn+1AnG&1
n . This identity

can, moreover, be used to define Gn recursively for n=N&1, ..., n=0.

(2) We now prove the general case. Before we proceed, it is useful to
introduce the following convention for matrix norms of submatrices of
matrices in Kk, k: given some submatrix B that is composed of a selected
subset of the rows and columns of a given matrix A # Kk, k, we extend B
to a matrix C # Kk, k by letting the entries in the rows or columns that
do not occur in B be zero. Then we let &B&=&C&. It may be assumed that
��

l=0 (&Dl&�|aj (l )| ) converges for j>L and diverges for j�L. We set

d(n)= max
L+1� j�k

&Dn&
|aj (n)|

and we define 4n by (2.6), except that the maximum is taken over all pairs
i, j with L+1�i, j�k, and similarly we define 4$n by (2.6), where the
maximum is taken over all pairs i, j with 1�i�L, L+1� j�k. Note that
in particular it follows that d(n)��(n) d(l )�4n for n�N. As in part (1)
of the proof, ��

l=0 d(l ) converges and both 4n and 4$n tend to zero as

18 R. J. KOOMAN
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n � �. We let N # N be so large that 4n<1�40c2 and 4$n<1�4c2 for n�N,
where c is as in (2.7). Put

An+Dn=\Pn

Rn

Qn

Sn + (n # N)

where Pn # KL, L, Sn # Kk&L, k&L. We show that the equation

Xn+1=(PnXn+Qn)(Sn+RnXn)&1 (Xn # K L, k&L, n�N) (2.13)

has a solution [Xn] that converges to zero. Set

P$n=diag(a1(n), ..., aL(n)), S$n=diag(aL+1(n), ..., ak(n)),

and

Q$n=(Pn&P$n) Xn+Qn (n�N).

We define sequences [X ( j)
n ], [Q ( j)

n ], [S ( j)
n ] for j�0, n�N by X (0)

n =0,
X ( j)

N =0 for all j and

Q ( j)
n =(Pn&P$n) X ( j)

n +Qn , S ( j)
n =Sn+RnX ( j)

n ,

X ( j+1)
n+1 =(P$nX ( j+1)

n +Q ( j)
n )(S ( j)

n )&1.

We first show that [X ( j)
n ] converges to zero as n � � and that &X ( j)

n &�1
for all j and n�N, and further, that S ( j)

n is invertible, so that the sequences
are well-defined. For j=0 this is trivial and we suppose that it is true for
[X ( j)

n ]. Then

&Q ( j)
n &�2 &Dn&,

&S ( j)
n &S$n&�2 &Dn&�

1
20c2 min

L+1�i�k
|ai (n)|<&(S$n)&1&&1,

so that S ( j)
n is indeed invertible for all n�N, and

&(S ( j)
n )&1&�

&(S$n)&1&
1&2 &(S$n)&1& }&Dn&

. (2.14)

We may apply part (1) of the proof to S ( j)
n and obtain some sequence

[H ( j)
n ] in Kk&L, k&L such that &H ( j)

n &IL&k&�8c24n�1�5 and S ( j)
n =

Hn+1S$n(H ( j)
n )&1. An explicit expression for X ( j+1)

n is given by

X ( j+1)
n = :

n&1

l=N

P$n&1 } } } } } P$l+1Q ( j)
l H ( j)

l (S$l)
&1 (S$n&1 } } } } } S$l+1)&1 (H ( j)

n )&1,

19SOLUTIONS OF LINEAR RECURRENCES
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whence

|(X ( j+1)
n H ( j)

n )pq |� :
n&1

l=N

|(Q ( j)
l H ( j)

l (S$l)
&1)pq | `

n&1

h=l+1
} ap(h)
aq+L(h) }

for 1�p�L, 1�q�k&L and, by &H ( j)
n &�6�5, &(H ( j)

n )&1&�6�5,

&X ( j+1)
n &�4c24$n<1. (2.15)

We show that, for n fixed, the sequences [X ( j)
n ]j converge to limits Xn . For

n=N this is obvious and XN=0. Suppose it is true for N�n�m. Because

X ( j+1)
m+1 =(P$mX ( j+1)

m +(Pm&P$m) X ( j)
m +Qm)(Sm+RmX ( j)

m )&1 (2.16)

for j�0 and by (2.14), we can take limits in (2.16) and let j � �. Then the
right-hand side converges to the right-hand side of (2.13) and thus X ( j)

n+1

converges to some limit Xn+1 such that (2.13) holds. In addition, by (2.15),

&Xn+1&�4c24$n+1<1.

In particular, Xn � 0 as n � �. (Note that for all 1�i�L, L+1� j�k
the sums that occur in the definition of 4$n do not converge, because
otherwise ��

n=0 (&Dn&�|ai (n)| ) would converge for at least one i�N, which
is in conflict with the assumption. Hence �(n) stands for �n&1

0 for these
pairs i, j in (1.9).)

Setting

H (1)
n =\IL

0
Xn

Ik&L+ (n�N)

we have that &H (1)
n &I&=&Xn& and

(H (1)
n+1)&1 (An+Dn) H (1)

n =\Pn&Xn+1 Rn

Rn

0
RnXn+Sn+ . (2.17)

We now go on to show that the equation

Yn+1(Pn&Xn+1Rn)=(RnXn+Sn) Yn+Rn (Yn # KL&k, L, n�N)

has a solution [Yn] that converges to zero. As before, we use an iteration
method. Let P$n , S$n be as above and set

4"n=max
i, j

`
n&1

q=0
} ai (q)
aj (q) } } :

(n)

d(l ) `
l&1

h=0
} aj (h)
ai (h) } ,

20 R. J. KOOMAN
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where the maximum is taken over all pairs i, j with L+1�i�k, 1� j�L.
Again, 4"n tends to zero as n � �, by Lemma 2.1. Note that the sum
converges and 4"n�c1 4n for some constant c1>0. Further we let N$�N
be so large that 4"n�1�5c2 for n�N$. For simplicity, we write N for N$.

We define sequences [Y ( j)
n ], [R ( j)

n ] (n�N, j�0) by

R ( j)
n =Rn+(Xn+1Rn+P$n&Pn) Y ( j)

n+1+(RnXn+Sn&S$n) Y ( j)
n (2.18)

and

Y (0)
n =0, Y ( j+1)

n+1 P$n=S$nY ( j+1)
n +R ( j)

n (n�N, j�0).

An explicit expression for Y ( j)
n is given by

Y ( j)
n =(S$n&1 } } } } } S$N) \Y ( j)

N + :
n&1

l=N

(S$l&1 } } } } } S$N)&1 (S$l)
&1 R ( j&1)

l

_(P$l&1 } } } } } P$N)+ (P$n&1 } } } } } P$N)&1.

If &R ( j&1)
n &�5 &Dn & for n�N, then

" :
n&1

l=N

(S$l&1 } } } } } S$N)&1 (S$l)
&1 R ( j&1)

l (P$l&1 } } } } } P$N)"
�5c2 max

1�i�L, L+1� j�k
:

n&1

l=N

d(l ) `
l&1

h=N }
ai (h)
aj (h) }

and the sum on the right-hand side converges, because the quotients
>l&1

h=N ( |ai (h)�aj (h)| ) are bounded. If we choose

Y ( j)
N =& :

�

l=N

(S$l&1 } } } } } S$N)&1 (S$l)
&1 R ( j&1)

l (P$l&1 } } } } } P$N),

then

Y ( j)
n =& :

�

l=n

(S$l&1 } } } } } S$n)&1 (S$l)
&1 R ( j&1)

l (P$l&1 } } } } } P$n), (2.19)

whence

&Y ( j)
n &�5c24"n�1.

In particular, Y ( j)
n � 0 as n � �. Further, by (2.18) we also have &R ( j)

n &�
5 &Dn& for n�N.
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We show that the sequences [Y ( j)
n ]j converge to limits Yn as j � �. Let

mj=maxn�N &Y ( j)
n &Y ( j&1)

n &. We have m1�5c24"N�1. By (2.18),

&(S$l)
&1 (R ( j&1)

l &R ( j&2)
l )&�4mj&1d(l ).

Using expression (2.19) we find that, for j�2, 1�p�k&L, 1�q�L,

|(Y ( j)
n &Y ( j&1)

n )pq |� :
�

l=n

|((S$l)
&1 (R ( j&1)

l &R ( j&2)
l )pq)| `

l&1

h=n

|aq(h)|
|ap+L(h)|

,

so that

&Y ( j)
n &Y ( j&1)

n &�4c2mj&1 4"n ,

whence

mj�4c2mj&1 max
n�N

4"n� 4
5 mj&1.

If we define Yn=��
j=0 (Y ( j+1)

n &Y ( j)
n ) for n�N, which is well-defined in

view of (2.18), then clearly Y ( j)
n � Yn as j � �, and

&Yn&�5c24"n�1 (n�N).

Setting

H (2)
n =\ IL

Yn

0
Ik&L+ (n�N),

we have that &H (2)
n &I&=&Yn& and

(H (1)
n+1 H (2)

n+1)&1 (An+Dn) H (1)
n H (2)

n =\Pn&Xn+1Rn

0
0

Rn Xn+Sn+ .

Finally, we note that Rn Xn+Sn is invertible and �n (&RnXn+Sn&S$n &�
|aj (n)| )<� for j>L by (2.14), hence we may apply part (1) of the proof
to the matrix block RnXn+Sn , thus finding matrices G$n # Kk&L, k&L

(n�N) such that

(G$n+1)&1 (RnXn+Sn) G$n=diag(aL+1(n), ..., ak(n))=S$n

and

&G$n&I&�c24n (n�N)
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for some constant c2>0. Finally, we set

Gn=H (1)
n H (2)

n \IL

0
0

G$n +
and Zn=&Xn+1. The estimate for Zn follows from &Xn&�4c24$n .

3. MO� BIUS-TRANSFORMATIONS: GENERAL PROPERTIES

A way to study matrix recurrences Mnxn=xn+1 of order two is to
consider the matrix Mn , instead of representing a linear map from C2

to C2, as representing a map from the one-dimensional complex projective
space P1(C) to itself. In fact, if Mn=( an

cn

bn
dn

), we let Fn(z)=(anz+bn)�
(cn z+dn) for n # N. Instead of studying the behaviour of solutions of the
matrix recurrence, we study the orbits of points in P1(C) under the action
of the sequence of Mo� bius-transformations (or fractional linear maps, as
they are also called) [Fn]. The advantage of this point of view is that we
can use the topology of P1(C). Note that Fn is not a constant map because
det Mn{0. First we recall a few classical, but important properties of Mo� bius-
transformations. All of them can no doubt be found in the literature, but
it is useful to put them together for easy reference.

We take the usual topology on P1(C), i.e., we take the usual topology
on C, and let P1(C) be the one-point compactification. It is well known
that P1(C) can be identified with a sphere S 2 in R3, e.g., by stereographic
projection. This enables us to define a distance on P1(C), which is
invariant under maps in SU(2, C), namely, let d(z, w)=|z&w|�(1+|z| 2)1�2

(1+|w| 2)1�2 for z, w # C and d(z, �)=1�(1+|z| 2)1�2 for z # C. d(z, w)
comes from the usual distance on the sphere in R3, by stereographic projection.
The following lemma collects some essential properties and identities that
we shall need in the sequel.

Lemma 3.1. (1) A Mo� bius-transformation is a homeomorphism of P1(C).

(2) Mo� bius-transformations leave the harmonic double ratio (z1 , z2; z3 , z4)
=(z1&z3)�(z1&z4) : (z2&z3)�(z2&z4) invariant.

(3) A Mo� bius-transformation which is not the identical map F(z)=z
has either one or two fixpoints in P1(C).

(4) For F a Mo� bius�transformation, w, z{�, we have

(F(z)&F(w))2=F $(z) F $(w)(z&w)2.

(5) If F has two fixpoints ` and ', both {�, then F $(`) F $(')=1. If
F has one fixpoint `, then F $(`)=1.

23SOLUTIONS OF LINEAR RECURRENCES



File: DISTL2 317124 . By:CV . Date:31:03:98 . Time:08:49 LOP8M. V8.B. Page 01:01
Codes: 2739 Signs: 1957 . Length: 45 pic 0 pts, 190 mm

(6) If F has two fixpoints `, ' and `{�, then

F(z)&`
F(z)&'

=F $(`) }
z&`
z&'

. (3.1)

If F has only one fixpoint `{�, then

1
F(z)&`

=
1

z&`
+c (3.2)

for some c # C.

Proof. Parts (1)�(3) are classical, and can be found, e.g., in [12, 16].
I have not been able to find a reference for (4)�(6) but the proofs are

very simple.

(4) This follows from (2) by taking z1=z, z2=w+h, z3=w, z4=z+h,
and sending h to 0.

(5) This follows from (4) by taking z=`, w='. For F parabolic, see (6).

(6) From (4) and (5) it follows that

\F(z)&`
F(z)&'+

2

=F $(`)2 } \z&`
z&'+

2

from which (6) follows up to a plus or minus sign. That the sign must be
plus follows if we realize that, by continuity, the sign must be independent
of z. Taking z=`+h and sending h � 0 shows that the sign is indeed positive.

Now suppose that F is parabolic with fixpoint `. Let G(z)=1�(z&`). Then
GFG&1 is parabolic with fixpoint �. It is easy to see that a parabolic map
with fixpoint � is of the form z � z+c for some c # C. Formula (3.2) now
follows immediately. Furthermore, formula (3.2) shows us that F $(`)=1
if `{�. Q.E.D

We recall Klein's classification of Mo� bius-transformations (see, e.g.,
[12, 16]): If F has exactly one fixpoint, it is called parabolic; if F has
exactly two fixpoints `, ', then it is called hyperbolic if F $(`) is real and not
1 or &1; it is called elliptic if |F $(`)|=1; and if |F $(`)|{1 and F $(`) is not
real, it is called loxodromic. If `=� we can define, with abuse of notation,
F $(`)=F $(')&1 (or =1 if F is parabolic). This is consistent with the fact
that if G is another Mo� bius-transformation, then G(`) is a fixpoint of
GFG&1 if ` is a fixpoint of F and (GFG&1)$ (G(`))=F $(`). As we shall see
in the next sections, the numbers F $(`), for ` a fixpoint of F, are a very
important indicator of the way in which the solutions converge. Finally, if
F is a Mo� bius-transformation, associated to a matrix M # GL(2, C) in the
natural way (as indicated above), then the fixpoints of F correspond to the
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eigenvectors of M (( y1 , y2)t is an eigenvector of M if and only if y1�y2 is
a fixpoint of F (where 1�0=�)) and the numbers F $(`) correspond to the
quotients of eigenvalues of M. The easiest way to see this is to consider
GFG&1 with fixpoints 0 and � (or only �, if F is parabolic) instead of F.
In this case, GFG&1 is of the form GFG&1(z)=*z (or GFG&1(z)=z+c for
some complex number c if F is parabolic).

4. SEQUENCES OF MO� BIUS-TRANSFORMATIONS

We now consider sequences of Mo� bius-transformations [Fn]. In this
section we derive some results that enable us to study the behaviour of
solutions of recurrences

Fn(zn)=zn+1 (n # N). (4.1)

First of all, in order to get a global impression of what one can expect, we
study the behaviour of solutions of recurrences F(zn)=zn+1 , i.e., where the
sequence [Fn] is a constant sequence. We shall see that the number F $(`),
where ` is one of the fixpoints of F, plays a crucial role. Using formula
(4.1), we see that

zn&`
zn&'

=F $(`)n }
z0&`
z0&'

,

where `, ' are the fixpoints of F. We derive immediately that if F is hyper-
bolic or loxodromic, and ` is the fixpoint for which |F $(`)|<1, then all
solutions [zn] but one converge to `. The one remaining solution is the
constant solution [']. On the other hand, if F is elliptic, then except for
the two constant solutions [`] and ['], none of the solutions converge
to the fixpoints, but remain on fixed circles [z # C: |(z&`)�(z&')|=c]
(c # R). If F is parabolic, then formula (2.2) shows that

1
zn&`

=
1

z0&`
+nc,

so that all solutions converge to the fixpoint `.

Definition. A fixpoint ` of a Mo� bius-transformation F is called hyper-
bolic, if F is hyperbolic or loxodromic. It is called elliptic if F is elliptic, and
it is called parabolic, if F is parabolic. If ` is a hyperbolic fixpoint, it is
called attracting (resp. repelling) if |F $(`)|<1 (resp. |F $(`)|>1).
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Definition. A point ` # P1(C) is called an attracting point of the recurrence
(4.1) if there is a neighbourhood U of ` and some number N such that any
solution [zn] that enters U for some n�N (i.e., zn # U) converges to `.

The following lemma gives four elementary, but important, facts about
convergence of the solutions of a recurrence zn+1=Fn(zn).

Lemma 4.1. Consider the recurrence

zn+1=Fn(zn) (n # N) (4.1)

for [Fn] a sequence of Mo� bius-transformations.

(1) If two solutions [z (1)
n ] and [z (2)

n ] of the recurrence converge to
some limit point ! # P(C), then for any two solutions [w (1)

n ] and [w (2)
n ] of

the same recurrence and for any =>0 there is a number N # N such that for
n�N either d(w (1)

n , !)<= or d(w (2)
n , !)<= (or both).

(2) If the recurrence has three solutions, two of which converge to
some limit point `, whereas the other one converges to some other limit point
', then all solutions except one converge to `.

(3) If the recurrence has three solutions, converging to three distinct
limits, then all solutions must converge, and any w # P1(C) is the limit point
of exactly one solution.

(4) If the sequence [Fn] converges to some limit F, and the recurrence
has some solution [zn] converging to a limit point !, the ! must be a fixpoint
of F.

Proof. (1) We may suppose that all four solutions are distinct. Suppose
that d(w( j)

ni
, !)>= for j=1, 2 and ni � �. Then either |w( j)

ni
&!|>a } = or

|1�w( j)
ni

&1�!|>a } = for some a>0. Hence the harmonic double ratios
(z (1)

ni
, z (2)

ni
; w (1)

ni
, w (2)

ni
) converge to 1 as i � �, which is impossible.

(2) This is an immediate consequence of (1).

(3) This again follows simply from the invariance of the harmonic
double ratio.

(4) By continuity, Fn(zn) must converge to F(!). Q.E.D

The following corollary follows directly from Lemma 4.1(1).

Corollary 4.2. If the recurrence (4.1) has an attracting point ` # P1(C),
then there is at most one solution of (4.1) that does not converge to `.

If F is not ``close'' to the identity map, then d(F(z), z) is small only if z
is close to some fixpoint of F. Hence in general, if the solutions of a recurrence
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Fn(zn)=zn+1 converge to some limit point, either this limit point must be
the limit of fixpoints of Fn , or (a subsequence of) the sequence [Fn] converges
to the identity map. In the section of examples, we shall show that it is possible
that the fixpoints of the maps Fn converge, but that the solutions do not
converge at all (e.g., Examples 9.3 and 9.5). or even converge to other limit
points (Example 9.2). Moreover, it is possible that there are infinitely many
converging solutions and infinitely many non-converging solutions. In order
to have convergence of the solutions to the limits of the fixpoints, we must
impose conditions on the way the fixpoints converge and on the numbers
F $n(`n) as well (`n a fixpoint of Fn). Situations where we can obtain neat
convergence results occur if the fixpoints are, in a sense to be specified,
``sufficiently hyperbolic'' (see Example 6.4), and also if the fixpoints are of
bounded variation, i.e., if �n d(`n , `n+1) and �n d('n , 'n+1) converge for the
fixpoints `n , 'n of Fn and if they do not converge to the same limit. In order
to study the latter case, we shall first have a look at the case where the Fn

have one fixpoint in common. This is the subject of the next section.

5. INHOMOGENEOUS FIRST-ORDER RECURRENCES

In the preceding section we studied the asymptotic behaviour of solutions
of a recurrence given by a sequence of Mo� bius-transformations, where all
Mo� bius-transformations are the same. We have seen that there are, grossly
speaking, three types of behaviour (hyperbolic, elliptic., and parabolic) but
in either case, there are solutions that converge to the fixpoints. The next
difficult case we turn our attention to is the case where the Mo� bius-trans-
formations are not the same, but have one fixpoint in common. In this case
there is an explicit formula for the solutions of the recurrence, which allows
us to study in detail what types of asymptotic behaviour can occur. We
shall see that in this case there is a much richer variety of asymptotic
behaviour, even if both fixpoints of the Mo� bius-transformations converge:
in that case there are not always converging solutions (except for the constant
solution [�] of course); see Section 9 for examples where the convergence
behaviour is not so neat. The most important result of this section is that
if the fixpoints are of bounded variation (and not converging to equal limits),
the asymptotic behaviour of the solutions depends entirely on the derivatives
of the Mo� bius-transformations in the fixpoints, a result that will also hold
if the Mo� bius-transformations do not have a fixpoint in common. But this
will have to wait until Section 7.

If F is a Mo� bius-transformation with infinity as a fixpoint, then F is of
the form F(z)=az+b with a, b complex numbers. If F has '{� as a
fixpoint, and G(z)=1�(z&'), then GFG&1 has infinity as a fixpoint. In
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particular, we have G(F(z))=a } G(z)+b. Suppose F has another fixpoint
`{�. Then G$(`) } F $(`)=aG$(`), hence a=F $(`) and b=G(`)(1&F $(`)):

1
F(z)&'

=F $(`) }
1

z&'
+

(1&F $(`))
`&'

. (5.1)

If '=�, then G is the identity, so that just

F(z)=F $(`) z+(1&F $(`)) `. (5.2)

In this section, we investigate the solutions of a recurrence Fn(zn)=zn+1

where the Fn have a common fixpoint '. As is clear from the preceding
discussion, we may assume that '=�. In other words, we study recurrences
of the type

zn+1=*n zn+bn (bn=`n(1&*n); n # N) (5.3)

(where `n is the finite fixpoint of Fn) which is just a linear inhomogeneous
recurrence of order one, and can be solved explicitly. In fact, as can easily
be checked, its solutions are of the form

zn=*n&1 } } } } } *0 \z0+ :
n&1

k=0

bk(*k } } } } } *0)&1+ . (5.4)

Using the identity bn=`n(1&*n), we obtain an alternative expression for
the solution

zn=`n+*n&1 } } } } } *0 \z0&`0+ :
n&1

k=0

(*k } } } } } *0)&1 (`k&`k+1)+ .

(5.5)

In the remainder of this section, we assume that the fixpoints `n of Fn are
of bounded variation, i.e., that ��

n=0 |`n&`n+1 | converges. We shall see
that the behaviour of the solutions of the recurrence Fn(zn)=zn+1 depends
entirely on the products of the numbers Fn(`n). We put together the different
important cases in a theorem.

Theorem 5.1. Consider the recurrence

Fn(zn)=zn+1 (n # N), (5.6)

where Fn(z)=*nz+bn has fixpoints `n and � (n # N). If the sum
��

n=0 |`n&`n+1 | converges, then

(1) If >�
k=0 |F $k(`k)|=0 and > p

k=m |F $k(`k)| is bounded from above for
all m, p then all solutions [zn]{[�] of (5.6) converge to `=limn � � `n .
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(2) If >�
k=0 |F $k(`k)|=� and > p

k=m |F $k(`k)| is bounded from below
for all m, p, then all solutions of (5.6) converge to � except for one solution
that converges to `.

(3) If 0<m<>n
k=0 |F $k(`k)|<M for all n and real numbers m, M

then (5.6) has one solution that converges to `, whereas all other ``finite''
solutions [zn]{[�] do not converge. Moreover, if >�

k=0 |F $k(`k)| converges,
then all finite solutions [zn] converge to circles [z # C: |z&`|=r] for r # R,
but they do not converge to single points, unless >�

k=0 F $k(`k) converges.

Furthermore, in cases (2) and (3) we have the equality

zn&`n=(*0 } } } } } *n&1)

_\z0&`0+C& :
�

k=n

(*0 } } } } } *k)&1 (`k&`k+1)+ (5.7)

for all n # N, and for some complex number C. (The equality is also valid if
the sequence [`n] is not of bounded variation.)

We shall use the following fact in order to prove the theorem:

Lemma 5.2. If ak and bk are sequences of complex numbers, such that
��

k=0 |bk | converges and |an+k �an |<M for all n and k>0, then ��
k=n akbk

=o(an) as n � �.

Proof. |��
k=n akbk |<M |an | } ��

k=n |bk |. Q.E.D

Proof of Theorem 5.1. (1) We use formula (5.5). Clearly, *n=
F $n(`n). Let A=supm, p |*m } } } } } *p |. Take =>0 and N so large that
��

k=N+1 |`k&`k+1 |<=�A. Then, for n�N,

}(*0 } } } } } *n&1) :
n&1

k=0

(*0 } } } } } *k)&1 (`k&`k+1) }
�|*0 } } } } } *n&1 | \ :

N

k=0

|*0 } } } } } *k | &1 } |`k&`k+1 |+
+A } :

n&1

k=N+1

|`k&`k+1 |.

The first term on the right side tends to zero as n � �, and the second
term is smaller than =. From this and (5.5) it follows that zn&`n tends to
zero as n � �.

(2), (3) In these cases, the sum �n&1
k=0 (*0 } } } } } *k)&1 (`k&`k+1)

converges to some number C # C. Thus, formula (5.7) follows immediately
from (5.5). If we choose z0=`0&C, then
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zn&`n =&(*0 } } } } } *n&1) } :
�

k=n

(*0 } } } } } *k)&1 (`k&`k+1)

= :
�

k=n

(*k+1 } } } } } *n&1)(`k&`k+1).

In case (2), we use Lemma 5.2 for ak=(*0 } } } } } *k)&1 and bk=`k&`k+1

which shows us that zn&`n tends to zero as n � �. In case (3), we have
|*0 } } } } } *n&1 |<M, so that zn&`n tends to zero as n � �. On the other
hand, if we choose z0 {`0&C, we see that zn&`n=(>n&1

k=0 *k)(c+o(1))
for c{0. From this fact, it follows that zn&`n converges to � in case (2),
and does not converge in case (3), unless >�

n=0 *n<�. If >�
n=0 |*n |<�,

then zn&`n converges to the circle [z # C: |z|=c >�
n=0 |*n |]. Q.E.D

The section of examples (Section 9) shows that things are not so easy if
the fixpoints are not of bounded variation. In that case, it may happen that
none of the solutions converge (except for the constant solution [�]), or
that only some of them converge.

Comparing the results of Theorem 5.1 with the behaviour of the solutions of
the ``constant recurrence'' F(zn)=zn+1 , as discussed in the beginning of
Section 3, we see that in cases (1) and (2) the solutions display ``hyper-
bolic'' behaviour, with ` the attracting limit point in case (1) and the repelling
limit point in case (2), whereas in case (3) the solutions display ``elliptic''
behaviour.

6. STABILITY

Let [Fn] be a sequence of Mo� bius-transformations with converging
fixpoints. This section is concerned with the case that at least one of the
limits ` of fixpoints is stable, i.e., that solutions [zn] of the recurrence
Fn(zn)=zn+1 that are close to ` for n large enough, remain so. For example,
this phenomenon can be observed in cases (1) and (2) of Theorem 5.1 for
one of the limits of fixpoints, and in case (3) for both. The aim of this section
is to show that when this situation��that will be defined more precisely��
occurs, then there is indeed a solution that converges to the limit point `.
Finally, we shall see that although some solutions converge to `, this will
in general not be the case for all solutions. To begin with, we define what
is meant by stability.

Definition. Let [Fn] be a sequence of Mo� bius-transformations, and
` # P1(C). A neighbourhood basis [U:]: of ` is called stable (under [Fn])
if for each U: there is a number n(:) and a neighbourhood V: #U: such
that for any sequence [Uh]h converging to `, the corresponding sequence
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[Vh]h tends to ` as well and such that for any solution [zn] of the
recurrence Fn(zn)=zn+1 , if zm # U: for some m�n(:), then zn # V: for
all n�m.

A point ` # P1(C) is called stable with respect to a recurrence Fn(zn)=zn+1

(or a sequence of Mo� bius-transformations [Fn]) if it has a stable neigh-
bourhood basis under [Fn].

Notice that there is no loss of generality if we take U:=[z # P1(C):
d(z, `)<:] for :>0. We can now state the main result of this section.

Theorem 6.1. Suppose that ` # P1(C) is stable with respect to the sequence
of Mo� bius-transformations [Fn]. Then the recurrence

Fn(zn)=zn+1 (n # N) (6.1)

has a solution that converges to `, and for every neighbourhood U in the
stable neighbourhood basis there is some solution [wn] such that wn � U for
all n large enough.

Before we arrive at the proof of this result, we first prove another result,
which is in itself not without interest. It says essentially that if the recurrence
(6.1) has for every neighbourhood of some point ` # P1(C) a solution that
remains in this neighbourhood from a certain index on then there is a solution
that converges to `, provided that there is also a solution that comes not
too close to `.

Theorem 6.2. Suppose that for some ` # P1(C) for each =>0 the
recurrence (6.1) has a solution [zn]=[zn(=)] such that d(`, zn)<= for all
n�N(=), and furthermore that there exists some number =0>0 and a
solution [wn] of (6.1) such that d(`, wn)>=0 for all n�N. Then (6.1) has a
solution that converges to `. Moreover for each n, wn is the limit point of a
sequence [zn(=i)]i such that =i � 0, if and only if all solutions except for
[wn] tend to `.

Proof. Without loss of generality we may take N=0 and `=0. In that
case we can use |z| instead of d(z, `) for z # C. Put Gn(z)=z�(zw&1

n +1)
(n # N). From |z|<=<=0 it follows that |Gn(z)|<=�(1&=�=0) and if
|Gn(z)|<=, then |z|=|G&1

n (Gn(z))|<=�(1&=�=0). In particular, zn � 0 if
and only if Gn(zn) � 0 (n � �). The recurrence G&1

n+1Fn Gn(zn)=zn+1

has a constant solution [�], so it is an inhomogeneous linear first-order
recurrence. By (5.4), its other solutions have the form

zn=(*0 } } } } } *n&1)(z0+1n) (n # N). (6.2)
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We now have sequences [=i] and [ci] such that =i � 0 as i � � and

|(*0 } } } } } *n&1)(ci+1n)|<=i for n�N(=i). (6.3)

Let c be a limit point of the sequence of the ci 's. There are two possibilities:

(1) c is finite. Then take N$(=i) the minimum over the N(=j) where
=j�=i and |c&cj |�3�2 |ci&cj |. This implies that

|(*0 } } } } } *n&1)(c+1n)|<=i+|(*0 } } } } } *n&1)(c&ci)|<4=i

for n�N$(=i). Hence, the solution corresponding to c in the expression
(6.2) converges to 0.

(2) c=�. The solution corresponding to the value c=� is [wn]
itself, which of course never can converge to 0. Inequality (6.3) implies that

|*0 } } } } } *n&1 |<
=i+=j

|ci&cj |
for n�max(N(=i), N(=j)),

and the term on the right-hand side tends to zero as j � �, hence
*0 } } } } } *n&1 must tend to zero as well. But in that case,

|1n(*0 } } } } } *n&1)|<=i+|ci (*0 } } } } } *n&1)|<2=i

for n large enough. Hence every solution distinct from [wn] must converge
to zero. Q.E.D

As Example 9.6 in Section 9 will show, the existence of the solution [wn]
that remains ``far from'' ` is really necessary.

We use this result for the proof of Theorem 6.1:

Proof of Theorem 6.1. Since ` has a stable neighbourhood basis with
respect to the [Fn], the recurrence (6.1) certainly has, for any neighbourhood
of `, some solution that remains in that neighbourhood from a certain
index on. In order to apply Theorem 6.2, we must show that there is some
solution that does not approach ` too closely.

Let U=U: be one of the stable open sets belonging to this basis and
V#U the corresponding V: . We may assume that the closure V� of V is not
the whole P1(C). Put N=n(:). Let, for n�N, En be the set U _ F &1

N (U)
_ } } } _ (Fn&1 } } } FN)&1 (U). Clearly EN=U/V, and EN /EN+1/EN+2

/ } } } and En {P1(C) for all n since otherwise for all solutions [zn] of (6.1),
zn # V for n�n0 for some n0 , which is absurd. Further, all En are open sets.
Hence, for the complements E c

n #E c
n+1 # } } } , which form a decreasing

sequence of closed sets, the intersection ��
n=N E c

n is not empty. Take some
solution [wn] of (6.1) with wN # ��

n=N E c
n . Then wn � U for all n�N.

Q.E.D
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Combining Theorem 6.1 and Corollary 4.2 we get the following result:

Corollary 6.3. If ` # P1(C) is a stable attracting point of the recurrence
(6.1), then all solutions except one of (6.3) converge to `. Moreover, if the
stable neighbourhood basis extends to P1(C)"['], then the remaining solution
converges to '.

As an example, we prove a simplified, non-quantitative, two-dimensional
variant of Theorem 2.1 of [6]. (The result we prove here is largely a special
case of the theorem mentioned but it is only for the sake of showing how
the results of this section can be applied that the example below is given.)

Example 6.4. Let a sequence of Mo� bius-transformations Fn be given
by

Fn(z)=
rn z+ pn

qn z+sn
(n # N), (6.4)

where

|rn�sn |<1, :
�

n=0

( |sn |&|rn | )=�, lim
n � �

| pn |+|qn |
|sn |&|rn |

=0.

Then all solutions [zn] of (6.1) except one converge to 0, whereas the
remaining solution converges to �. If |qn |�( |sn |&|rn | ) is only bounded,
then all solutions except one converge to 0.

Proof. It suffices to show that z=0 has a stable neighbourhood basis
(whose sets U: cover C in case |qn |�( |sn |&|rn | ) � 0) and that every
solution close to z=0 converges to 0.

Choose 0<=<� arbitrarily. Then, if |zn |<=,

|zn+1 |�
|rn | =+| pn |
|sn |&|qn | =

<=

provided that |qn | =<|sn | and `n<=<'n , with `n , 'n the zeros of |qn | X2

&( |sn |&|rn | ) X+| pn |, where `n converges to 0. In the case that |qn |�
( |sn |&|rn | ) � 0 the second zero 'n converges to �, in the more general
case only |'n |>M>0 for n large enough. If |zn |�`n , and 2 |qn | =<|sn |,
then

|zn+1 |�
|rn | |zn |+| pn |
|sn |&|qn | |zn |

<
2( |rn | |zn |+| pn | )

|sn |
<2`n+2 | pn |�|sn | ,
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where the right-hand side tends to zero. Hence, we have a stable neigh-
bourhood basis of z=0 which extends to C if |qn |�( |sn |&|rn | ) � 0. (For
U:=[z # C: |z|<=], we have

V:=[z # C: |z|<max
n�N

(2`n+2 | pn |�|sn |, =)]

for N=n(:) so large that all conditions 2|qn | =<|sn |, `n<=<'n are satisfied
for n�N.) Hence by Theorem 6.1 and the remark below Theorem 6.2,
there is a solution that converges to 0. We show that all solutions close to
z=0 converge to 0. Take 0<=<1, and =$=- =<|zn |<1. Let N be so
large that | pn |+|qn |<=( |sn |&|rn | ) for n�N. Then

|zn+1 |�
|rn | |zn |+=( |sn |&|rn | )
|sn |&=( |sn |&|rn | ) |zn |

�
|rn |(1&=$)+=$ |sn |
=$ |rn |+|sn |(1&=$)

} |zn |

and since >�
n=0 |rn�sn |=0, also >�

n=0 (( |rn | (1&=$)+=$ |sn | )�(=$ |rn |+
|sn | (1&=$)))=0, so that in the end |zn | becomes arbitrarily small. We can
now use Corollary 6.3 to show that in fact all solutions except one converge
to z=0. Q.E.D

Corollary 6.5. If the sequence of Mo� bius-transformations [Fn] converges
to some Mo� bius-transformation F which is either hyperbolic or loxodromic, then
all solutions of the corresponding recurrence (6.1) converge to one of the fixpoints
of F, one solution converging to the fixpoint ' with |F $(')|>1, the other solutions
converging to the other fixpoint `.

Proof. It suffices to take `=0 and '=�. Then F(z)=*z with |*|<1.
Now the above example (or Theorem 2.1 of [6]) can be applied. Q.E.D

Mandell and Magnus [8] already showed that in this case all solutions
except one converge to `. In fact, this result also follows from the matrix
version of the Poincare� �Perron Theorem (as can be seen if we apply Theorem
1.1 for k=2).

7. SEQUENCES OF MO� BIUS-TRANSFORMATIONS
WHOSE FIXPOINTS ARE OF BOUNDED VARIATION

The aim of this section is to show that if [Fn] is a sequence of Mo� bius-
transformations, and the fixpoints `n and 'n of the Fn are of bounded variation
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(i.e., the sums ��
n=0 d(`n , `n+1) and ��

n=0 d('n , 'n+1) converge) and converge
to distinct limits, then the behaviour of the solutions of the recurrence

Fn(zn)=zn+1 (n # N) (7.1)

behave as if the fixpoints `n , 'n were constant for all n, i.e., the convergence
behaviour depends entirely on >�

n=0 |F $n(`n)|, at least if the product is
bounded or �. In accordance with the convention mentioned in the
Introduction, this means that all products > p

n=m |F $n(`n)| are bounded
either from above or from below (see Example 9.1).

Theorem 7.1. Let [Fn] be a given sequence of Mo� bius-transformations
whose fixpoints `n and 'n are of bounded variation and converge to distinct
points ` and ' in P1(C). Then

(1) If >�
n=0 |F $n(`n)|=0, then all solutions but one converge to `,

whereas the remaining solution converges to '.

(2) If >�
n=0 |F $n(`n)|=�, then all solutions but one converge to ',

whereas the remaining solution converges to `.

(3) If 0<m<> p
n=m |F $n(`n)|<M for all m, p, there is exactly one

solution that converges to `, and one solution that converges to '. If >�
n=0 |F$(`n)|

converges, then all the other solutions converge to circles [z # P1(C): |(z&`)�
(z&')|=c] for c # C, c{0. If also >�

n=0 F $n(`n) converges, then all solutions
converge to distinct points.

Gill [4] proved the following result, which appears to be a special case
of Theorem 7.1:

Theorem. If [Fn] is a sequence of Mo� bius-transformations that converges
to an elliptic map F, and if the fixpoints `n , 'n of the Fn are of bounded variation
and |F $n(`n)|<1 for all n, then all solutions except for at most one converge
to `=limn � � `n if >�

n=0 |F $n(`n)|=0, whereas if >�
n=0 |F $n(`n)| converges,

then there are two solutions that converge to the limits of fixpoints ` and ',
whereas the other solutions do not converge.

We shall need Theorem 1.4. For simplicity, we restate Theorem 1.4 in
the simplified version that we shall use here (for k=2, and without the
estimations).

Lemma 7.2. Let [*n] be a sequence of complex numbers such that > p
n=m |*n |

is bounded either from below or from above. Let

Mn=diag(*n , 1)+Dn (n # N),
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where ��
n=0 &Dn&�max(1, |*n | )<�. Then there exists some sequence of matrices

[Jn], converging to identity, and some sequence of numbers [$n], $n=O(&Dn&),
such that

J&1
n+1 Mn Jn=diag(*n+$n , 1) (n # N).

If ��
n=0 &Dn &�min(1, |*n | ) converges, then we may take $n=0.

Proof of Theorem 7.1. By (5.1), we have

(Fn(z)&`n)&1=F $n('n)(z&`n)&1+(1&F $n('n))('n&`n)&1 (n # N)

whence, by F $n(`n) F $n('n)=1 (Lemma 3.1(5)),

Fn(z)&`n=
F $n(`n)(z&`n)

1+(F $n(`n)&1)('n&`n)&1 (z&`n)

so that, for [zn] any solution of (7.1), [ yn]=[zn&`n] satisfies

yn+1 =
F $n(`n) yn

1+(F $n(`n)&1)('n&`n)&1 yn
+`n&`n+1

=: F (0)
n ( yn)+`n&`n+1. (7.2)

For simplicity, we assume `=0, '=�. The recurrence xn+1=F (0)
n (xn)

(n # N) has, by Theorem 5.1, solutions [0] and [gn] with limn � � gn=�
in either of the cases (1)�(3). In order to see this most easily, notice that

x&1
n+1=F $n('n) x&1

n +(1&F $n('n))('n&`n)&1.

Set Gn(z)=z�(1&zg&1
n ) for n # N. Then Gn+1F (0)

n G&1
n has fixpoints 0 and

�, and (Gn+1 F (0)
n G&1

n )$ (0)=(F (0)
n )$ (0)=F $n(`n) hence Gn+1 F (0)

n G&1
n (z)=

F $n(`n)z. In order to apply Lemma 7.2, we use the corresponding matrices:
Set

M (0)
n =\ F $n(`n)

(F $n(`n)&1)('n&`n)&1

0
1+ ,

Mn=M (0)
n +(`n&`n+1) \(F $n(`n)&1)('n&`n)&1

0
1
0+ ,

and

Nn=\ 1
& g&1

n

0
1+
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the matrices corresponding to F (0)
n , Fn(z)&`n , and Gn , respectively. Then

Nn+1Mn N &1
n (z)=diag(F $n(`n), 1)+Dn (n # N)

with &Dn&=O( |`n&`n+1 | max(1, |F $n(`n | )) since Nn � I as n � �.
Applying Lemma 7.2 and translating the result back into a result for Mo� bius-
transformations we obtain that there exists a sequence of Mo� bius-transforma-
tions [Hn], converging to the identity and a sequence of numbers [$n]
with ��

n=0 |$n |�max(1, |F $n(`n)| )<� such that

Hn+1FnH &1
n (z)=(F $n(`n)+$n)(z) (n # N)

with $n=O( |`n&`n+1 |) max(1, |F $n(`n | ). Because [Hn(zn)] converges if
and only if [zn] does so, it is sufficient to show that the statements of the
theorem are true for

zn+1=(F $n(`n)+$n) zn . (7.3)

If >�
n=0 |F $n(`n)|=0, we must show that also >�

n=0 ( |F $n(`n)|+$n)=0. But
this is true, because ��

n=0 (1&|F $n(`n)|&$n)=��
n=0 (1&|F $n(`n)| ) up to a

finite number, since ��
n=0 |$n |<�. If >�

n=0 |F $n(`n)|=� or if 0<m<
>�

n=0 |F $n(`n)|<M, we can even take $n=0. This proves the result,
because the solutions of (7.2) are of the form zn=C } >n&1

h=0 (F $h(`h)+$h)
for C # C or C=�. Q.E.D

By Corollary 6.5, if the sequence [Fn] converges to a hyperbolic or
loxodromic map, there is convergence of all solutions, even if the fixpoints
of the Fn are not of bounded variation. However, this is not true in general
if the maps Fn converge to an elliptic or a parabolic limit, as will be shown
in Examples 9.3, 9.4, and 9.5. (Obviously, we do not expect all solutions to
converge in the elliptic case, but at most two of them. Still, it may happen
that none of the solutions converge if the fixpoints of the Fn are not of
bounded variation.)

8. PARABOLIC BEHAVIOUR

In this section we consider sequences of Mo� bius-transformations with
fixpoints that converge to the same limit (or Mo� bius-transformations that
are themselves parabolic). In this case, the asymptotic behaviour of the
solutions is much more sensitive to the coefficients: for instance, in this case
it is not sufficient anymore that the fixpoints are of bounded variation in
order to get a neat convergence result. One way to treat this ``parabolic
case'' is to try to separate the fixpoints by a suitable transformation: we
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look for maps Gn (as neat as possible) such that G&1
n+1 Fn Gn(z) are Mo� bius-

transformations that have fixpoints converging to distinct limits, and to
which results like those in Sections 4�7 can be applied. We shall not give
an example of this in this section, but the reader can see that exactly this
idea is applied twice in the proof of Theorem 10.1 (where we deal with
matrix recurrences and not with Mo� bius-transformations, but the idea
remains the same). Another way to treat this ``parabolic case'' that comes
to mind is to use a similar perturbation method as in the preceding section.
We shall give an example of how one can proceed in this case, but we shall
not go into the matter very deeply. A similar method was used to prove
Theorem 5.1 of [6]. Still another point of view is to study the behaviour
of orbits under a sequence of Mo� bius-transformations in the complex
plane, somewhat similar to what we did in Section 6. We intend to study
the special case here that the sequence of Mo� bius-transformations converges
to a parabolic Mo� bius-transformation and that there is a region in P1(C)
that is stable under all the Mo� bius-transformations involved. This point of
view was inspired by the following theorem of O. Perron (in [14]):

Theorem. Consider the linear recurrence of order two given by

un+2&(2&'1(n)) un+1+(1&'0(n)) un (n # N)

with limn � � '0(n)=limn � � '1(n)=0 and '1(n)�0 and '0(n)&'1(n)�0
for all n. Then limn � � un+1 �un=1 for all non-zero solutions [un].

If we put zn=un+1 �un&1 for all n this amounts to saying that all
solutions [zn] of the recurrence

zn+1=
(1&'1(n)) zn+'0(n)&'1(n)

1+zn
(n # N)

converge to zero. Later we shall see that this result is a special case of
Theorem 8.3, and that the condition '1(n)�0 can be replaced by '1(n) # R.
But first we prove the following result:

Theorem 8.1. Let *n , $n , cn be complex numbers (n # N) such that
>�

n=0 *n converges, ��
n=0 |$n �n

h=0 ch | converges, and |��
n=0 cn |=�,

whereas cn��n&1
h=0 ch tends to 0 as n � �. Then all solutions of the recurrence

Fn(zn)=zn+1 (n # N) (8.1)

with Fn given by

Fn(z)=
*n z+$n

cn z+1
(n # N)
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converge to `=0. Moreover, there is one ``subdominant'' solution [wn] in the
sense that wn } �n&1

h=0 ch � 0 as n � �, whereas for the other solutions [zn],
zn } �n&1

h=0 ch � 1 as n � �, so that in particular limn � �(wn�zn)=0.

If we take in Theorem 8, *n=1, $n=0, and cn=c{0 for all n, then
Fn=F is just a parabolic map with fixpoint 0. In this case, the solutions
of the recurrence (8.1) are [wn]=[0], the subdominant solution, and
[zn]=[1�(a+cn)] for a # C. If we let ��

n=0 |cn | converge, then by
Lemma 7.2 there exist Mo� bius-transformations Gn , converging to the identity
map, such that G&1

n+1 Fn Gn(z)=z, so that all solutions of the recurrence
converge to distinct limits, and if we let >n *n=0, and either �n |cn |
converges, or |cn |�(1&|*n | ) is bounded, then by Example 6.4 or by
Theorem 2.1 of [6] all solutions except one of the recurrence converge to
`=0, whereas the one remaining solution does not converge to 0. This
shows that the conditions on the coefficients of Fn cannot be weakened too
much.

On the other hand, if we fix the sequences [*n] and [cn], Theorem 8.1
essentially gives a condition on the sequence [$n] in order that the solutions
of Theorem 8.1 are asymptotically equal to the solutions of the recurrence
with the same *n , cn but with $n=0 for all n. Here also, the condition on
the $n is as sharp as possible (e.g., take Fn(z)=(z+d�n(n+1))�(z+1)
which has solutions of the form [a�n] with a a zero of X2&X&d ; see also
Example 9.7).

Proof of Theorem 8.1. We use a perturbation method, as in Theorem 7.1.
Let F (0)

n (z)=*nz�(1+cnz). The solutions of the recurrence

F (0)
n (zn)=zn+1 (n # N)

are [wn]=[0] or [zn], where

zn=*0 } } } } } *n&1 \z&1
0 + :

n&1

h=0

ch*0 } } } } } *h&1+
&1

.

Let [gn] be the solution with g0=�. Then

g&1
n = :

n&1

h=0

ch(*h } } } } } *n&1)&1 (n # N)

so that gn } �n&1
h=0 ch � 1 as n � �.
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Put Gn(z)= gnz�(1+z) for n�N with N so large that gn {0 or � for
n�N. Then G&1

n (z)=z�(gn&z) and G&1
n+1F (0)

n Gn has fixpoints 0 and �,
whereas (G&1

n+1F (0)
n Gn)$ (0)=(G$n(0)�G$n+1(0))*n , hence

G&1
n+1F (0)

n Gn(z)=*n
gn

gn+1

z (n�N).

Furthermore, let F� n , G� n be the matrices corresponding to Fn and Gn ,
respectively:

F� n=\*n

cn

$n

1 + , G� n=\gn

1
0
1+ .

Then, for some C>0,

:
�

n=N

&G� &1
n+1F� nG� n&diag(*n gn�gn+1 , 1)&<C } :

�

n=N

|$n |�| gn+1 |<�

by gn �n&1
h=0 ch � 1. Thus, by Theorem 1.4 (or Lemma 7.2, which amounts

to the same in this case), there exist Mo� bius-transformations Hn , converging
to the identity map, such that

(Gn+1Hn+1)&1 FnGnHn(z)=*n
gn

gn+1

z.

Thus, (8.1) has solutions [zn(c)]=[GnHn(c*0 } } } } } *n&1 �gn)] for c # C
and [GnHn(�)] (which corresponds to c=�). For c=0 we have zn(0)=
gn Hn(0)�(1+Hn(0))=o(gn), and for c{0 or c=� we have zn(c)�gn � 1
as n � �. Q.E.D

Obviously, it is not essential that in Theorem 8.1 the fixpoints converge
to 0. If the fixpoints converge to ` # P1(C), we can always apply a transfor-
mation and consider G&1FnG instead of Fn such that the fixpoints of
G&1FnG converge to 0. In particular, if the Fn converge to some F in
Theorem 8.1, F can be just any parabolic map. Notice that the solutions of
the recurrence behave in a ``hyperbolic'' way. There is one subdominant solution,
that corresponds to a solution converging to the repelling fixpoint; the
other solutions, having all the same size, correspond to solutions converging
to the attracting fixpoint. The limits of the two fixpoints coincide in this
case. That this is not a mere metaphor is in fact shown by the proof, where
we separate the fixpoints by some transformation, and where the resulting
recurrence (defined by G&1

n+1FnGn) is in fact of hyperbolic type. Similarly,
there are recurrences of type (8.1) where the limit is parabolic and where
the solutions behave ``elliptically.'' An example is given in Example 9.7,
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where the set of initial values of the solutions that converge is the complement
of a circle in P1(C).

On the other hand, it may also happen that the maps Fn converge to
some parabolic map F, and none of its solutions converge (see Example 9.5;
compare also with the remark at the end of Section 7, and Example 9.3,
where it is shown that a similar phenomenon may occur if F is elliptic). We
conclude the first part of Section 8 with an application of Theorem 8.1. The
following result was first proved by Gill [4].

Example 8.2. Suppose that [Fn] is a sequence of Mo� bius-transforma-
tions converging to some parabolic map F. Suppose that for the fixpoints
`n , 'n we have ��

n=0 n |`n&`n+1 |<� and ��
n=0 |'n&`n |<�. Then all

solutions of the recurrence Fn(zn)=zn+1 converge to the fixpoint ` of F.

Proof. We use formula (7.2). Note that it is also valid if Fn is parabolic:
in this case F $n(`n)=1, so that 'n does not appear in the formula. Without
loss of generality we take `=0. In that case, F(z)=z�(1+cz) for some c{0.
Formula (7.2) now shows that either Fn is parabolic or (F $n(`n)&1)('n&`n)&1

converges to c. In particular, ��
n=0 |F $n(`n)&1| converges, and Theorem 8.1

can be applied to formula (7.2) with

cn=(&1+F $n(`n))('n&`n)&1,

*n=F $n(`n)+(`n&`n+1) cn ,

$n=`n&`n+1.

Note that >�
n=0 *n converges since ��

n=0 |*n&1| does. Q.E.D

Remark. In addition, Theorem 8.1 shows that for all solutions [zn] of
the recurrence except one limn � � nzn=1�c whereas there is one solution
[wn] with nwn=o(1).

We now proceed to the second result of this section.

Definition. A region U/P1(C) is called stable under a sequence of
Mo� bius-transformations [Fn] if Fn(U)/U for all n.

Definition A region U/P1(C) is called disk-like if it is either the
interior of a circle in C, or union of the exterior of a circle and [�] or a
half-plane in C.

The following result is easily seen to imply Perron's Theorem:

Theorem 8.3. Let H be a disk-like that is stable under a sequence of Mo� bius-
transformations [Fn] that converges to some parabolic map F, such that
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F(H){H. Then all solutions of the recurrence (8.1) converge to the fixpoint
of F.

Proof. We first show that ` must lie on the boundary �H of H. By
continuity, H must be stable under F (i.e., F(H)/H). Since F is parabolic,
all solutions of the recurrence F(zn)=zn+1 converge to `, by Section 4.
Hence, ` must lie in the closure H� of H, because solutions that enter H
never leave it again. Since F&1 is also parabolic, and the complement H� c

of H� is stable under F&1, ` must lie in Hc as well. Hence, ` # �H. Because
of this, there is no loss of generality if we assume `=0 and H=[z # C: Rz>0]
(considering G&1FnG instead of Fn for some suitable Mo� bius-transformation G).
Then F(z)=z�(1+cz) and the stability of H implies that Rc>0 (by RF(ai)>0
for some a # R). We show that: (1) Every solution that does not remain in
an arbitrary neighbourhood U of ` must eventually enter H. (2) Every solution
that enters H must eventually enter some neighbourhood V/U of `. (3)
Every solution that enters H & V will remain in H & U forever. Notice that
the first fact allows us to conclude that solutions that do not enter H also
converge to `. Fix a small number =>0, and set U=[z # C: |z|�=] and
V=[z # C: |z|�=$] for =$==(P�2)Q, for positive numbers P�1 and Q
whose values are determined below.

(1) Let [zn] be a solution of (8.1) and suppose that |zn |>= for some
large n, say n�N (how large N must be will appear in the sequel). We
show that zn+m # H for m large enough. Firstly, setting Fn(z)=(anz+bn)�
(cn z+1), we have

R \ 1
czn+1

&
1

czn+=R
cnz2

n+(1&an) zn&bn

czn(anzn+bn)
.

Since the expression on the right-hand side tends uniformly to 1 for |z|>=$
as n � �, we take N0 so large that it is at least 1�2 for |zn |>=$ and n�N0 .
Further, since Rc>0, there is some number M such that |z|>=$ and
R(1�cz)>M implies z # H. By R(1�cz)>&1�= |c| for |z|>= and |zn |>= it
suffices to show that |zn+m |>=$ as long as both 0�m�Q=W2M+2(= |c| )&1X
and |zn+m | � H in order to establish (1). Let 0<P�1 be such that |an&cnz|>P
for n�N$0 and |z| � H. Further, let N�max(N0 , N$0) be so large that
|bn |<=$ for n�N. Then, by F &1

n (z)=(z&bn)�(an&cn z), we have that, as
long as zn+1 � H and |zn+1 |>=$,

|zn�zn+1 |=|F &1
n (zn+1)�zn+1 |�(1+|bn |�|zn+1 |)�P<2�P.

If, on the other hand, zn+1 � H and |zn+1 |<=$, then |z|�2=$�P. Thus, if
|zn |>=, zn � H for n�N, then either |zn+m |>=(P�2)m�=$ or zn+m # H for
0�m�Q.
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(2) We show that solutions that enter H do indeed enter V. If
|zn |�=$, then there is nothing to prove. If |zn |>=$ for n�N, then, as
above, R(1�czn+1)&R(1�czn)>1�2, so that for some m�0 we have either
|zn+m |�=$ or both R(1�czn+m)�0 and |zn+m |>=$. In the former case, we
are ready. In the latter case, we use that |z|>=$, R(1�cz)�0 implies
|1+cz|>1+=" for some =">0, hence |1+cnz|>1+="�2 for n�N1�N.
This implies that for R(1�cz)>0, |z|>= we have

|Fn(z)�z|� } an+bn�z
(cnz+1) }<1&="�4

for n�N2 large enough. From this inequality it follows that if zn # H, then
indeed zn+m # V for some m�0.

(3) The only thing that can still go wrong at this stage is that zn can
leave V and become large before R(1�czn)�0 again. But if |zn |>=$, then
R(1�czn)�&1�=$|c|, so that R(1�czn+m)�0 for some m�R=W2(=$ |c|)&1X .
On the other hand, if z # H, |z|>=$, and n is large enough, then

|Fn(z)�z|� } an+bn�z
(cnz+1) }<M$

for some M$ because the denominator of the right-hand term is bounded
from below for z # H. Lastly, if |z|�=$, and =$ is small enough, then
|Fn(z)|<2=$, for n sufficiently large. Hence, if |zn |�=$ for some n�N3 ,
then |zn+m |<2=$(M$)R for all m�0. Q.E.D

Let, for n # N, En be the set [z=z0 : zn # H] of initial values of solutions
[zn] of (8.1) that lie in H from index n on. It is clear that E0 #E1 #E2 ...
and all En are open sets in P1(C), since En=(Fn&1 } } } F0)&1 (H) (n # N).
The union of the sets En consists of the initial values of the solutions of
(8.1) that enter H at some stage. The intersection ��

n=0 E c
n of the comple-

ments is closed and not empty, since En can never be the whole P1(C) for
any given n. This proves that there are solutions that never enter H��but
we have seen that nevertheless these solutions converge to `=0��and the
set E of their initial values is either a closed disk or a single point. In fact,
both possibilities occur. For the case that E is a single point let, for all n,
Fn be the constant parabolic map F(z)=z�(1+cz) with Rc>0. It is clear
that H=[z # C: Rz>0] is stable under F. Moreover, all solutions are of
the form [1�(a+cn)]n or [0]. It is obvious that all solutions enter H
except for [0], which remains on the boundary. See Example 9.8 for the
case that E is a closed disk.
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9. EXAMPLES

In this section we have collected a number of examples most of which
are meant to show that the theorems we proved do not hold generally, but
that the additional conditions we imposed are, in a sense, natural and cannot
be broadened too much. For every example we shall refer to the section or
the theorem to which they belong.

(1) The first example shows that our convention that >�
n=0 *n=0

implies that > p
n=m *n is bounded from above for all m, p is a natural one.

In fact, we have a recurrence that satisfies in all respects the conditions of
Theorem 7.1(1), except that > p

n=m *n is not bounded for all m, p. We
can see that Theorem 7.1, which says that all solutions must converge, is
not valid. The example belongs to Theorem 7.1, but also to Theorem 1.4,
because it shows that the condition on the boundedness of the numbers
> p

n=m |ai (n)�aj (n)| is not a mere caprice of the proof. Consequently, it also
belongs to Theorem 1.3.

Example 9.1. Consider the recurrence

zn+1=*n zn+bn (n # N), (9.1)

where the numbers *n , bn are defined as follows: Setting mi=e&1�i2
and

&i=i3 for i odd and mi=e1�i 2&2�i 3
, &i=i3 for i even (i�1) we let *n=mi for

ni&1�n<ni where ni=&1+ } } } +&i . Further, bn=1�i4 for n=ni&1 (i odd)
and bn=0 otherwise. Clearly, ��

n=0 |bn |, ��
n=0 |*n&*n+1 | converge, and the

fixpoints � and bn�(1&*n) are of bounded variation. Then m&i
i =e&i for i odd

and m&i
i =ei&2 for i even, so that for i�0

*n2i+1&1 } } } } } *0=m&1
1

} } } } } m&2i+1
2i+1

=e&3i&1

and for i>0

*n2i&1 } } } } } *0=m&1
1 } } } } } m&2i

2i =e&i.

This shows that >�
n=0 *n=0, but that > p

n=m *n is not bounded. For
[zn]{[�] a solution of (9.1) we have

zn=*n&1 } } } } } *0 \z0+ :
n&1

h=0

bh(*h } } } } } *0)&1+ .

Since the choice of z0 obviously does not influence the convergence of the
solution, we take z0=0. Thus, for j>0,

z22 j
=e& j :

j

i=1

1
(2i&1)4 e3i&2�

1
(2 j&1)4 e2 j&2
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and the right-hand side clearly converges to � as j � �. On the other
hand,

zn2 j+1
=e&3 j&1 :

j+1

i=1

1
(2i&1)4 e3i&2

which converges to zero as j � �. Namely, for L< j fixed,

0<zn2 j+1
<e&3 j&1 :

L&1

i=0

1
(2i+1)4 e3i+1+

1
(2L+1)4 :

j

i=L

e3(i& j),

where the first term on the right-hand side tends to zero as j � � and the
second term is smaller than 2�(2L+1)4 for j�L. Thus we see that none of
the solutions (except for [�] which is fixed by construction) converges.

(2) The second example shows that it may happen that Fn converges
and its fixpoints converge, but the solutions converge to points that are not
equal to the limits of the fixpoints. By Lemma 4.1(4) this can only happen
if the limit of the Fn is the identity map.

Example 9.2. Let bk , ck be complex numbers such that bk � 1 and
ck=o(bk&1) as k � �. Define Mo� bius-transformations Fk , Gk by

Fk(z)=bk z, Gk(z)=
z+bkck

ck z+bk
(k # N).

Then Fk has fixpoints 0, � and the fixpoints of Gk satisfy ckz2+(bk&1) z
&bkck=0, hence these converge to 0 and � too. Further, GkFk(z)=(z+ck)�
(ck z+1) has fixpoints 1 and &1 and (Gk Fk)$ (1)=(1&ck)�(1+ck). Since
moreover Fk � id we see that the recurrence Jn(zn)=zn+1 with J2k=Fk ,
J2k+1=Gk (k�0) has two solutions that converge to 1 and &1. If we now
take ck=1�(k+1), then all solutions except one converge to 1, and if we
choose ck=i�(k+1), then none of the solutions converge, except for the
two that converge to 1 and &1. This follows from Theorem 7.1, but also
from the following identity, which follows from Lemma 3.1(6):

z2n&1
z2n+1

=\ `
n&1

h=0

(Gh Fh)$ (1)+ z0&1
z0+1

.

(3) Next we give an example of a sequence of Mo� bius-transformations
[Fn] that converges to an elliptic map F, but where the corresponding
recurrence Fn(zn)=zn+1 has no converging solutions (see Section 7).
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Example 9.3. Let ak (k�0) be imaginary numbers, converging to 0,
and such that ��

n=0 ian=�. Set ck=2ak�(a2
k+1). Then ck � 0 as k � �

and ck is imaginary. Let

F2k(z)=
z&ck

ckz&1
, F2k+1(z)=

z+ck

&ck z&1
(k�0).

Then F2k has fixpoints ak , a&1
k , and F $2k(ak)=&1. Similarly, F2k+1 has

fixpoints &ak , &a&1
k , and F $2k+1(&ak)=&1. Further,

Hk(z)=F2k+1 F2k(z)=
(1+c2

k) z&2ck

&2ckz+(1+c2
k)

(k�0)

has fixpoints 1 and &1 and H$k(1)=((1+ck)�(1&ck))2=((1+ak)�
(1&ak))4 so that |H$k(1)|=1 and >�

k=0 H$k(1) does not converge (here we
use that ��

n=0 ian=�). Hence the recurrence Hk(zk)=zk+1 has only two
converging solutions, [1] and [&1] (by Theorem 7.1 or by an argument
similar to that used in Example 9.2).

Since the Fn converge to F(z)=&z we see immediately that the
recurrence Fn(zn)=zn+1 has no converging solutions at all. For the case
that the Mo� bius-transformations converge to an arbitrary elliptic map
F(z)=%z with |%|=1, consider the recurrence Jn(zn)=zn+1 (n # N) with Jn

defined as follows.
Let N1 , N2 , ... be natural numbers, and %k roots of unity such that

%Nk
k =&1 for all k and %k � % as k increases. Let Gn be Mo� bius-transforma-

tions defined by

G2k(z)&ak

G2k(z)&a&1
k

=%k
z&ak

z&a&1
k

,
G2k+1(z)+ak

G2k+1(z)+a&1
k

=%k
z+ak

z+a&1
k

.

Then GNk
2k =F2k , GNk

2k+1=F2k+1 , and Gn(z) � %z. Define Jn=G2k for n=
2N1+ } } } +2Nk&1+i, Jn=G2k+1 for n=2N1+ } } } +2Nk&1+Nk+i
(0<i<Nk). Then Jn(z) converges to %z and Jn(zn)=zn+1 has no converging
solutions.

(4) Here is another instance of a sequence of Mo� bius-transformations
converging to some elliptic map. We present two variants: in one case all
solutions except one converge, and the remaining solution converges to a
circle. In the second case, all solutions except one do not converge to a
point, but to a circle.
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Example 9.4 (A). Let 0<,<2? be some positive real number and
! # C. Set *n=(1+1�n) ei,, and !n=!+��

h=n (1�h) ei(h+1),. Now consider
the recurrence

zn+1=Fn(zn)=*n zn+(1&*n) !n (n>0).

Fn converges to F(z)=ei,z+(1&ei,) !, which is an elliptic map. The
general form of the solutions is

zn=!n+nei,n(c&1�n) (n>0),

where c # P1(C), as can easily be ascertained. For c{0, zn converges to �,
but for c=0, zn=!n&ei,n, which does not converge to a single limit, but
converges to the circle [z # C: |z&!|=1].

Example 9.4 (B). Let 0<,<2? be some positive real number and
! # C. Set *n=nei,�(n+1), and !n=!+��

h=n+1 (1�h) eih,. Consider the
recurrence

zn+1=Fn(zn)=*n zn+(1&*n) !n (n>0).

As in (A), Fn converges to F(z)=ei,z+(1&ei,) !, which is an elliptic map.
The general form of the solutions is

zn=!n+
1
n

ei,n(c+n) (n>0),

where c # P1(C). For all c # C, (zn&!n) ein, converges to 1. In particular,
all finite solutions converge to the circle [z # C: |z&!|=1].

(5) An example similar to Example 9.3 can be given for a sequence of
Mo� bius-transformations Fn converging to a parabolic map F, where none
of the solutions of the corresponding recurrence converge (compare with
Section 8).

Example 9.5. Let 0<N1<N2 ... be an increasing sequence of natural
numbers. Let ak=tan(?�2Nk) and bk=tan(?�4Nk) (k�0). Then (1&iak)�
(1+iak)=e&?i�Nk, (1&ibk)�(1+ibk)=e&?i�2Nk, and (ak �bk) � 2 as k � �.
Define Mo� bius-transformations Fk , Gk by

Fk(z)=
z+ia2

k

iz+1
, Gk(z)=

z+ib2
k

iz+1
(k # N).

Fk has fixpoints ak , &ak and F $k(ak)=(1&iak)�(1+iak) so that F Nk
k (z)=

a2
k�z. Similarly, Gk has fixpoints \bk and G2Nk

k (z)=b2
k�z. Hence, F Nk

k G2Nk
k (z)

=(ak�bk)2 z which converges to 4z. Define the recurrence Jn(zn)=zn+1 by
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Jn=Gk for n=3N1+ } } } +3Nk&1+i,

Jn=Fk for n=3N1+ } } } +3Nk&1+2Nk+ j

for 0<i�2Nk and 0< j�Nk . Then Jn(z) � z�(iz+1) where the limit is a
parabolic map with fixpoint 0. Since F Nk

k G2Nk
k (z) � 4z (k � �) the solutions

of the recurrence defined by the Jn can only converge to 0 and �, but F Nk
k

interchanges 0 and �. Hence there can be no converging solutions.

(6) The next example is inspired by Theorem 6.2, which says that if for
any neighbourhood of a point ` the recurrence Fn(zn)=zn+1 has some
solution that lies in that neighbourhood almost always (i.e., for all but
a finite number of indices), then there is a solution of the recurrence that
really converges to ` provided that there is also some solution that lies
almost always outside some neighbourhood of `. We show here that the
latter condition cannot be dispensed with.

Example 9.6. Let, for j�1, Mo� bius-transformations Gj and Hj be
given by

Gj (z)=
z&1
1+ jz

, Hj (z)=
( j�( j+1))(z+1)

1& jz
.

Then HjGj(z)=( j�( j+1)) z and Fj (z)=GjHj&1Gj&1 } } } H1G1(z)=(z�( j&1))�
(1+z). Fj (z) converges to &1�(1+z). Let [=k] be a decreasing sequence
of numbers 0<=k<1 that tends to 0 as k � �, and define numbers z (k)

0 =
1�=k&1 that are to be the initial values of solutions [z (k)

n ] of the recurrence
Jn(zn)=zn+1 with J2h&1=Hh , J2h&2=Gh (h>0). Obviously, z (k)

2n&1=
Fn(z (k)

0 )=(1&=k)�n&=k and z(k)
2n =z (k)

0 �(n+1) so that |z (k)
m |<=k for m large

enough. But there is no solution that converges to 0: For suppose there is
one, say [wn]; then w2n&1=Fn(w0)=(w0 �n&1)�(1+w0). This can only
converge to 0 if w0=�. But in that case, w2n=w0 �(n+1)=�, which
contradicts the assumption that wn converges to zero.

(7) Here we give an example of a sequence [Fn] of Mo� bius-transforma-
tions with a stable region H and converging to a parabolic transformation F.
The recurrence Fn(zn)=zn+1 has solutions that converge if and only if the
initial values do not lie on a circle in P1(C). Theorem 8.3 does not apply
here because F(H)=H here (and not a genuine subset of H). This shows
that the condition that F may not map H onto itself cannot be dispensed
with.

Example 9.7. Let Fn(z)=(z+c�(n2+n))�(z+1) (n>0). The recurrence

Fn(zn)=zn+1 (n�1)
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has two solutions [a�n] and [b�n] with a, b the zeros of the polynomial
X2&X&c, as can easily be ascertained. If c is real and c< &1�4, then a,
b are not real and b=a� . It thus follows that, for [zn] a solution of the
recurrence,

zn+1&a�(n+1)
zn+1&b�(n+1)

=:n
zn&a�n
zn&b�n

(n>0),

where :n=(c�a&n)�(c�b&n) (this can be seen by calculating the image of,
say, z=0 under Fn). Hence,

zn&a�n
zn&b�n

=C:n&1 } } } } } :0=C3n (n>0)

for some constant C, so that we find for the general solution

zn=
a&bC3n

1&C3n
}
1
n

(n>0). (9.2)

Note that |3n |=1 and that :n&1=d�n(1+o(1)) for some imaginary number
d{0. Hence, 3n does not converge. Now consider the solutions themselves.
For |C|{1 the denominator in (9.2) is bounded from below, whence zn

=O(1�n). On the other hand, if |C|=1, then for infinitely many values of n,
|C&1&3n |<C1�n for some C1>0 (this follows from the fact that :n&1=
d�n(1+o(1))). Hence zn cannot converge in this case (but nevertheless it is
``most of the time'' very close to 0, as follows also from Lemma 4.1(1)). Notice
that there are two stable regions: the upper and lower half-plane. The
solutions that do not converge lie on the real axis.

(8) In Section 8, Theorem 8.3, we studied the case where the maps Fn

converge to a parabolic map F and that there is a stable region H such that
Fn(H)/H for all n and F(H){H. We saw that in this case all solutions
of the recurrence defined by the maps Fn converge to the fixpoint of F, but
that either there is exactly one solution that never enters H or the solutions
that never enter H have their initial values in some closed disk. An example
of the first case has already been given at the end of Section 8: take all Fn

equal to F. We now give an example of the second case.

Example 9.8. Let c>0 be a given real number and set *n=(n&1)�(n+1)
and Fn(z)=(*nz)�(1+cz) (n>1). It is clear that Fn converges to a parabolic
map and that the half-plane H=[z # C: Rz>0] is stable under all Fn .
Also, F(H){H. Hence we are in the situation studied in the second part of
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Section 8. It can easily be checked that the recurrence Fn(zn)=zn+1 (n>1) has
solutions

zn=
1

n(n&1) \A&
c

n&1+
&1

(n>1)

for A # P1(C) (A=� corresponds to the fixed solution [zn]=[0]). Hence
Rz&1

n =(RA) } n(n&1)&cn and [zn] enters H precisely if RA>0. The
initial values z2= 1

2 (A&c)&1 of the solutions that do not enter H lie in the
complement of the region R((1�2z)+c)>0 which is precisely the closed
disk [z # C: |z+(1�4c)|�1�4c].

10. LINEAR SECOND-ORDER RECURRENCES

In this last section we apply some of the results obtained above to study
the asymptotic behaviour of the solutions of linear second-order recurrences

un+2+ p(n) un+1+q(n) un=0 (n # N), (10.1)

in particular those that have coefficients which are sums of fractional powers
n&ai (ai�0) of n plus a small perturbation term of order O(n&2&=). In
particular, the results obtained will hold if the coefficients have asymptotic
expressions which are power series in fractional powers of 1�n.

We shall see that in this case, if limn � � p(n)= p and limn � � q(n)=q
exist and p, q are not both zero, there are always solutions [un] such that
un+1 �un converge to the zeros :1 , :2 of the polynomial X2+ pX+q. In the
case that the zeros have distinct moduli, this is exactly the Poincare� �Perron
Theorem (see the remark below Theorem 1.2).

The case that the eigenvalues are distinct (but possibly having equal
moduli) is covered by Corollary 1.6, because in this case the zeros :1(n),
:2(n) of the polynomials X 2+ p(n) X+q(n) are also sums of fractional
powers of 1�n plus some term of order n&2&=. Hence the conditions of
Corollary 1.6 are satisfied. Because of this, we can limit ourselves to the
case that the zeros of /(X )=X2+ pX+q are equal and non-zero. Before
we proceed, we recall two important notions:

Definition. A non-zero solution [un] of a linear recurrence (10.1) is
subdominant if limn � � un�vn=0 for all solutions [vn] of (10.1) that are
linearly independent with [un].

Definition. A real, non-zero solution [un] of a linear recurrence (10.1)
oscillates if un un+1E0 for infinitely many n.
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We shall see that in the case that the zeros of the characteristic polynomial
are equal and non-zero, two different situations can occur:

(1) There are exactly two solutions [u (1)
n ], [u (2)

n ] such that the
quotients u (i)

n+1 �u (i)
n converge to the zero : of /, and limn � � |u (1)

n �u (2)
n |=1,

but limn � � u (1)
n �u (2)

n does not converge. Further, if p(n), q(n) # R, then all
real solutions [un] oscillate. This we shall call the elliptic case.

(2) For all non-zero solutions [un] the quotients un+1 �un converge
to : and there is a subdominant solution [u (1)

n ]. This will be referred to as
the hyperbolic case.

In order to make things more simple we shall apply a transformation to
(10.1) so that the recurrence depends only on one variable sequence, but
without losing information about the solutions of the original recurrence.
This can be done in the following manner: Setting vn=un >n&2

h=N (&2�p(h))
and C(n)=1&4q(n)�( p(n) p(n&1)) for n�N, where N is so large that
p(n){0 for n�N&1 we have that [un] is a solution of (10.1) if and only
if [vn] is a solution of

vn+2&2vn+1+(1&C(n)) vn (n�N). (10.2)

It is clear that the type of the recurrence (elliptic or hyperbolic, as defined
above) does not change if we replace (10.1) by (10.2). Moreover, if p(n),
q(n) are converging power series in n&a, the same holds for C(n). Note
that, in the case that the zeros of the characteristic polynomial of (10.1) are
equal and non-zero, limn � � C(n)=0 and the zero of the characteristic
polynomial X2&2X+1 is 1. We have the following result:

Theorem 10.1. Let C(n)=a1n j1+ } } } +akn jk+O(n&2&=) for a1 , ..., ak

# C, &2� jk< } } } < j1<0, and =>0. Then the recurrence (10.2) is of
hyperbolic type if

(1) limn � � n2C(n)=d # C and d is not a negative real number <&1�4.
In this case, if d{&1�4, there are two solutions [v (1)

n ], [v (2)
n ] with

lim
n � �

n \v (i)
n+1

v (i)
n

&1+=ri (i=1, 2) (10.3a)

with r1 , r2 the zeros of X2&X&d.
Further, if n2C(n) � d{ &1�4 and ��

n=0 |nC(n)&d�n| converges, then
there are solutions [v (1)

n ], [v (2)
n ] with limn � � v (i)

n �nri=1 (i=1, 2) with
r1 , r2 the roots of X2&X&d. If d=&1�4, and ��

n=0 log n |nC(n)&d�n|
converges, then there are solutions [v (1)

n ], [v (2)
n ] with limn � � v (1)

n �n1�2=1
and limn � � v (2)

n �n1�2 log n=1,
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(2) ��
n=0 R - C(n)=� where the branch of the square root is chosen

such that R - C(n)�0. This is the case when either a1 is not a negative real
number or when a1<0 and al � R for some 1<l�k with jl& j1 �2� &1. In
this case, we have solutions [v (1)

n ], [v (2)
n ] with

lim
n � � \v (i)

n+1

v (i)
n

&1+ }
1

- C(n)
=(&1) i (i=1, 2). (10.3b)

In particular, limn � � v (1)
n �v (2)

n =0.

In the remaining cases, (10.2) is of elliptic type. In the case that n2C(n) � �,
there are two solutions [v (1)

n ], [v (2)
n ] such that (10.3b) holds. If n2C(n) � d

<&1�4, then there are two solutions [v (1)
n ], [v (2)

n ] such that (10.3a) is valid
(with r1 , r2 the zeros of X2&X&d ). In both cases, limn � � v (1)

n �v (2)
n does not

converge, but limn � � |v (1)
n �v (2)

n | converges
If moreover ��

n=0 |nC(n)&d�n| converges, then there are solutions [v (1)
n ],

[v (2)
n ] with limn � � v (i)

n �nri=1 (i=1, 2) with r1 , r2 the roots of X2&X&d.
Lastly, if C(n) # R for all n, then the real solutions [vn] of (10.2) oscillate

in the elliptic case, but not in the hyperbolic case.

We need a simple, but useful lemma that connects the behaviour of un+1�un

to the behaviour of un�vn for [un], [vn] solutions of a linear recurrence.

Lemma 10.2. Let [un], [vn] be non-zero solutions of a linear second-
order recurrence (10.1). For every non-zero solution [wn] there exists a constant
C such that

wn+1 �wn&un+1 �un

wn+1 �wn&vn+1 �vn
=C }

vn

un
.

Proof. Subtracting (un+2+ p(n) un+1+q(n) un) wn+1=0 from (wn+2+
p(n) wn+1+q(n) wn) un+1=0, we obtain

un+2wn+1&un+1wn+2=q(n)(un+1wn&unwn+1) (n # N)

so that

un+1wn&wn+1un=c } `
n&1

h=0

q(h) (n # N),

where c depends only on [wn], [un]. Hence,

wn+1 �wn&un+1 �un

wn+1 �wn&vn+1 �vn
=

wn+1un&wnun+1

wn+1vn&wnvn+1

}
vn

un
=C }

vn

un
. Q.E.D.
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Another result that we shall use in order to decide when real solutions
of (10.2) oscillate is the following lemma.

Lemma 10.3. Consider the recurrence

zn+1=
zn+C(n)

zn+1
(n # N) (10.4)

with C(n) # R for all n and limn � � C(n)=0. The solution [zn] are of the
form zn=vn+1 �vn&1 for [vn]{[0] solutions of (10.2). If (10.4) has a real
solution that converges, then all solutions converge to 0 and (10.2) has a sub-
dominant solution, but no oscillating solutions. If (10.4) has no converging
solutions, then all real solutions of (10.2) oscillate.

Proof. Equation (10.4) is equivalent to

znzn+1+zn+1&zn&C(n)=0

and if we set zn=vn+1 �vn&1, then it follows immediately that [vn] is a
solution of (10.2) and conversely. If [zn] is real and converges, it can only
converge to 0. The fact that all solutions converge in that case, and that
(10.2) has a subdominant solution, is Proposition 2.2 and Corollary 7.2
of [7]. Suppose that the real solutions of (10.4) do not converge. Since
zn+1�zn unless either z2

n<C(n) or zn�&1 (or zn=�, which implies
zn&1=&1), it follows that we must have zn�&1 for infinitely many n. If
zn< &1, then vn+1 �vn<0 for the corresponding solution [vn] of ( 10.2),
hence vn and vn+1 have unequal signs. If zn=&1, then vn+1=0 so that
vn+2+(1&C(n)) vn=0, hence vn and vn+2 have unequal sign. In both
cases, we see that [vn] oscillates. On the other hand, if all solutions of
(10.4) converge then the real solutions of (10.2) do not oscillate. This
follows from the fact that all solutions [zn] of (10.4) must necessarily
converge to 0. Hence zn+1=vn+1 �vn does not change sign for n large
enough. Q.E.D

Proof of Theorem 10.1. We consider the associated matrix recurrence
Mnxn=xn+1 with Mn given by Mn=( 2

1
C(n)&1

0 ). Then set

Gn=\- C(n)
&1

- C(n)
1 + , A=\1

0
1
1+ .

Then the matrix recurrence G&1
n+1A&1MnAGn yn= yn+1 (n # N) has

solutions

yn=
1

- C(n)
} \vn+1&vn(1+- C(n))

vn+1&vn(1&- C(n))+
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for [vn] solutions of (10.2). It follows that the corresponding recurrence of
Mo� bius-transformations

zn+1=Fn(zn)=
cn z+bn

cn bnz+1
(n # N), (10.5)

where

cn=
1&- C(n)

1+- C(n)
and bn=&

- C(n+1)�C(n)&1

- C(n+1)�C(n)+1

has solutions [zn] where

zn=
(vn+1 �vn&1) } (1�- C(n))&1

(vn+1 �vn&1) } (1�- C(n))+1
. (10.6)

We apply Theorem 7.1 to (10.5). Note that (1&cn)�- C(n) � 2 and bn=
&j1 �4n+O(n&1&$), for some number $>0. Hence, if n2C(n) � �, the
fixpoints of Fn(zn), which are the roots of the polynomials bncnX2+(1&cn)
X&bn , tend to 0 and �. They are also of bounded variation, since bn and
cn are, like C(n), finite sums of (fractional) powers of 1�n plus some part
that is O(n&2&=), and so are the fixpoints themselves. If `n is the fixpoint
of Fn that converges to zero, we have

F $n(`n)=
1&sn

1+sn
, where sn=�\1&cn

1+cn+
2

+
4cnb2

n

(1+cn)2 .

This can be seen most easily if we realize that F $n(`n) is a quotient of the
two eigenvalues of the matrix (

cn
cnbn

bn
1 ) corresponding to Fn (see the final

paragraph of Section 2). Thus, by Theorem 7.1, (10.2) is of hyperbolic type,
with all solutions of (10.5) converging to one fixpoint, and the remaining
solution converging to the other fixpoint, precisely if >�

n=0 |F $n(`n)|=0 or
�, hence if ��

n=0 Rsn=\�, by |F $n(`n)| 2=1&(4Rsn�|1+sn | 2). Relation
(10.2) is of elliptic type if |F $n(`n)| converges, hence if ��

n=0 | Rsn | converges
(case (3) of Theorem 7.1). In that case, two of the solutions of (10.5) converge
to 0 and �, whereas the other solutions converge to circles [z # C: |z|=c].

Furthermore, if n2C(n) � � as n � �, then j1>&2 and

sn =- C(n)+ j2
1 �16n2+O(n&2&=)

=- C(n)(1+O(n&2& j1))

=- C(n)+O(n&2& j1�2),
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hence ��
n=0 Rsn converges (diverges) precisely when ��

n=0 R - C(n) does
so. Finally, (10.3) follows from (10.6) and the fact that there are (at least)
two solutions of (10.5) that converge to 0 and �. Let [wn] be any solution
of (10.2). Then, by Lemma 10.2, for some constant C,

(v(1)
n+1 �v(1)

n &1) } (1�- C(n))&(wn+1 �wn&1) } (1�- C(n))

(v (2)
n+1 �v (2)

n &1) } (1�- C(n))&(wn+1 �wn&1) } (1�- C(n))

=C }
v (2)

n

v (1)
n

(n # N). (10.7)

Thus we see that in the hyperbolic case, where (wn+1 �wn&1) } (1�- C(n))
converges to 1 for [wn] linearly independent with [v (1)

n ], limn � � v (1)
n �v (2)

n

=0. This follows also from the fact that >�
n=0 |(1&- C(n))�(1+- C(n))|=0

if ��
n=0 R - C(n)=�. In the elliptic case, for [wn] not a scalar multiple

of either of the [v (i)
n ], the left-hand side of (10.7) does not converge to a

point, but to a circle [z # C: |z|=C$], hence the same is true for the right-
hand side. We can choose [v(1)

n ] such that C=C$.
Similarly, if n2C(n)=d+o(1), then j1=&2 and

sn=�d+1�4
n2 (1+O(n&=))=- d+1�4 } n&1+O(1�n&1&=),

hence we are in the elliptic case if d<&1�4 and in the hyperbolic case for
all other d, except for d=&1�4, in which case the fixpoints of (10.5)
converge to the same point, so that Theorem 7.1 cannot be applied (we
recall that the limits f1 , f2 of the fixpoints of (10.5) are the zeros of the
polynomial X2+4 - d X&1). By Theorem 7.1, we have solutions [v (1)

n ],
[v (2)

n ] such that

lim
n � �

(v (i)
n+1 �v (i)

n &1) } (1�- C(n))&1

(v (i)
n+1 �v (i)

n &1) } (1�- C(n))+1
= fi (i=1, 2).

It follows that

lim
n � � \v (i)

n+1

v (i)
n

&1+ } n=- d }
1+ fi

1& fi
=ri (i=1, 2),

r1 , r2 being the roots of X2&X&d.
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The remaining assertions concerning the case that limn � � n2C(n)=d
must be treated separately. We consider the matrix recurrence

xn+1=A&1MnAxn=\1
1

C(n)
1 + xn (n # N) (10.8)

with Mn , A as above, and which has solutions xn=( vn+1&vn
vn

) for [vn]
solutions of (10.2). First let d{ &1�4. It follows from a straightforward
computation that for

Hn=\g (1)
n

1
g (2)

n

1 + , g (i)
n =ri �n (i=1, 2; n>0)

with r1 , r2 the roots of the polynomial X2&X&d, we have

\1
1

d�n(n+1)
1 + Hn=Hn+1 } diag \1+

r1

n
, 1+

r2

n + (n>0).

Hence, if ��
n=1 |nC(n)&d�n|<�, then, by &Hn&=O(1), &H &1

n &=
O((det Hn)&1)=O(n),

H &1
n+1A&1Mn AHn=diag \1+

r1

n
, 1+

r2

n ++Dn (n>0).

with &Dn&=n } O(C(n)&d�n(n+1)). Applying Lemma 7.2 we find a
sequence [Jn] converging to the identity matrix I such that

J &1
n+1H &1

n+1A&1MnAHnJn=diag \1+
r1

n
, 1+

r2

n + .

Let the solutions [x (i)
n ] of (10.8) be defined by x (i)

n =HnJn(ei) (i=1, 2).
Then

x(i)
n =\v̂ (i)

n+1&v̂ (i)
n

v̂ (i)
n +=\ri �n(1+o(1))

1+o(1) + } `
n&1

h=1

(1+ri �h).

Hence, v̂(i)
n �nri converges to non-zero numbers ci (i=1, 2). Setting v (i)

n =v̂ (i)
n �ci

for i=1, 2 we find the desired result.
We proceed similarly for the case that d=&1�4. In this case, as is shown

by a straightforward computation, we have

\1
1

d�n(n+1)
1 + Hn=Hn+1 } diag(1+ g (1)

n , 1+ g (2)
n ) (n>0),
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where now

Hn=\g (1)
n

1
g (2)

n

1 + , g (1)
n =

1
2n

,

g (2)
n =

1
2n

+
1
n \ :

n&1

h=1

1
k+1�2+

&1

(n>0).

In this case, &Hn&=O(1), &H &1
n &=O((det Hn)&1)=O(n log n). Hence,

if ��
n=1 n log n |C(n)+1�(4n2)|<�, then we can, by Lemma 7.2, find a

sequence of matrices [Jn] converging to identity and such that

J &1
n+1H &1

n+1A&1MnAHnJn=diag(1+ g (1)
n , 1+ g (2)

n ) (n>0).

The final part of the proof is similar to the case that d{&1�4.
We show that if C(n) # R, in the elliptic case the real solutions oscillate.

Here we use Lemma 10.3, together with the fact that (10.2) has a subdomi-
nant solution if and only if limn � � un�vn exists (or is �) for all non-zero
solutions [un], [vn] of (10.2). However, in the elliptic case, as we have
seen, limn � � (v (1)

n �v (2)
n ) does not converge. Hence, by Lemma 10.3, the real

solutions of the recurrence (10.4) diverge and the real solutions of (10.2)
oscillate. Q.E.D

The case that ��
n=0 |C(n)| converges was already treated by Coffmann [1].

The requirement that if n2C(n) � d=&1�4, then ��
n=1 n log n |C(n)+

1�(4n2)| must converge, instead of ��
n=1 n |C(n)+1�(4n2)|, as is the case

for d{&1�4, is really necessary. This can be seen from the following
fact (Corollary 5.3 of [7]):

Theorem 10.4. Consider the recurrence

zn+1=
zn+C(n)

1+zn
(n�n0) (10.9)

for C(n) # R, and suppose that limn � � C(n)=C exists. Set logj n=
log(logj&1 n), log1 n=log n. Then, if there is some number =>0 such that

C(n)�& 1
4 :

J

j=0

(n log n } } } logj n)&2+=(n log n } } } logJ n)&2,

then all real solutions of (10.9) converge, whereas if

C(n)�& 1
4 :

J

j=0

(n log n } } } logj n)&2&=(n log n } } } logJ n)&2,

then all real solutions of (10.9) diverge.
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In particular, if C(n)=&1�4n2+c�n2 log2 n, then the solutions of (10.9)
converge if c�&1�4, and diverge for c<&1�4. On the other hand, as we
have seen in the proof of Theorem 10.1, if [vn] is a solution of (10.2), then
[zn]=[vn+1 �vn&1] is a solution of (10.9) (by Lemma 10.3), and the real
solutions of (10.9) converge in the hyperbolic case, and diverge in the
elliptic case. Notice that Theorem 10.4 also shows that if the C(n) are real,
then the real solutions of (10.2) oscillate in the elliptic case.
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