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This paper is mainly concerned with the study of recurrences defined by Mobius-
transformations, whose solutions are the orbits of points on the Riemann-sphere
under a sequence of MObius-transformations. We study the asymptotic behaviour
of such solutions in relation to the asymptotic behaviour of the coefficients of the
Mobius-transformations. Most of the theorems give sufficient conditions in order
that there exist converging solutions, but a section of examples is added where examples
are given of recurrences whose solutions do not converge because one or several of
the conditions of the theorems are violated. One of the most important results of
this paper is that if the fixpoints of the Mdbius-transformations are of bounded
variation and converge to distinct limits, then the behaviour of the solutions
depends entirely on the products of the derivatives in the fixpoints. Several methods
will be proposed to deal with the case that the fixpoints converge to one single
limit. The paper starts with a few results on nth order recurrences and matrix
recurrences and concludes with an investigation of the asymptotic behaviour of the
solutions of linear second-order recurrences having coefficients that are asymptotic
expressions in fractional powers of the index n. A number of examples are added
in order to show how some of the theorems can be applied.  © 1998 Academic Press

INTRODUCTION AND NOTATION

This paper is divided into ten sections. Each section begins with a discussion
of the contents of that section, so the reader who wants to have a quick
idea of what this paper is about is advised to skim through the first few
lines of each section. The remainder of this introduction serves only to
introduce some basic facts and notations that will be needed throughout
the paper, for quick reference.

First of all, the solutions of the different types of recurrences that are
the subject of this paper are sequences of numbers, vectors, or matrices
{x,} 2 ,- Because we are only concerned with the asymptotic behaviour of

nj) n=n,
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the solutions, the precise value of the starting index is irrelevant, and solu-
tions will be given in the form {x,}, leaving out the domain of definition
of the indices. If it is necessary to specify such a domain, e.g., to indicate
hat a certain identity holds for all n, this will mostly be indicated by ne N.
A similar remark holds for sums and products, which are generally written

* o(+-+), etc. In a few cases, where an expression involves an infinite
sum, where the indices over which the sum extends depend on the convergence
of the sum, we shall avail ourselves of the notation Y, which is > if
the sum converges, and > 7_! if the sum does not converge (see especially
Theorem 1.4).

A matrix recurrence is given by a sequence
M,x,=x,,, (neN,n>N) (L.1)

with {M,} a sequence of non-singular k x k-matrices with entries in a field X,
where K= C or R and {x,} is a sequence of k x /-matrices with rank / (/<k).
We call the sequence {x,} an /-dimensional solution of the matrix recurrence.
In addition to matrix recurrences we also study linear (kth order) recurrences,
which are given by an equation (or rather, a sequence of equations)

Uy o+ Pr(m) o+ - +Po(n)u,=0 (1.2)

for neN, n> N, where the P;(n) are given sequences of numbers in the
field K and Py(n)#0 for n> N. In this case, {u,},- v, With the numbers
u,€K, is a solution of (1.2), and the sequence {(u, sy, U,) }usn
(where ¢ denotes the transpose of a vector or matrix) is a (1-dimensional)
solution of the so-called associated matrix recurrence, defined by the Kronecker-
matrices

CPe () e e —Py)
1

m=| 1000 (13)
0 0 1 0

A k-dimensional solution of this associated matrix recurrence is given by
a sequence of matrices whose column vectors are of the form (u”, , |, .., u'”)’
with {u'"}, ..., {u®} a complete set of linearly independent solutions of the
linear recurrence (1.2). In this way it is possible to translate results about
matrix recurrences into results about linear recurrences.

Finally, we give some notation concerning matrices and linear recurrences.
The notation 7, will be used to denote the identity matrix in K**. If there is
no ambiguity, we shall often write I instead of I,. We denote the ith unit
vector in K* by e;, and for a matrix M, we let M ; be the entry in the ith
row and the jth column. If x e K* is a vector, x’ denotes the transpose of x.



SOLUTIONS OF LINEAR RECURRENCES 3

If the entries of a sequence of matrices converge to a limit matrix M, the
characteristic polynomial y(M)=det(XI— M) will, by abuse of language,
also be called the characteristic polynomial of the corresponding recurrence.
Similarly for a linear recurrence (1.2): if the coefficients P;(n) converge to
numbers P; as n — oo, the characteristic polynomial of the recurrence will
be y(X)=X"+P, _ X“" '+ ... +P,. Of course, if (1.1) is the associated
matrix recurrence, the characteristic polynomials of (1.1) and (1.2) will be
equal.

For a matrix M e K*' the norm ||M| is defined as the matrix norm
induced by some vector norm on K”:

| M]| =max | Mx|/|x].
x#0

By diag(R,, R,, ..., R,,) we denote the (block-)diagonal matrix

R, 0
R,

R

m

where the R; are square matrices or just numbers in K.

In Theorems 1.1 and 1.2 we use the notation .# to denote the set of
functions F: N - R_, such that f(n)/f(m) is bounded from above for all
n>m >=n, and such that lim, _, . f(n+1)/f(n)=1. As an example, f(n)=1
and F(n)=n"“(log n)® with a, be R, a> 0 belong to ./Z.

Lastly, we adopt the following convention: if []>

n=ny

"

A,=0 (or o0) for
numbers 4, € K, this will imply that the products [[7_,, |4,| are bounded
from above (below) for all p >m >n,. We shall see that this is a natural

convention (e.g., compare Example 9.1).

1. MATRIX RECURRENCES AND NTH ORDER RECURRENCES

Although the bulk of this paper is concerned with sequences of Mobius-
transformations, we shall avail ourselves of the opportunity to state and
prove a few results on matrix recurrences and nth order linear recurrences.
In the remainder of the paper these will only be used for recurrences of
order two, but since the results are valid for any order, we may as well
state them in a more general context. The first result (Theorem 1.2) is an
interesting generalization of the well-known Poincaré—Perron Theorem
([ 13, 157]; for its statement see the remark after the proof of Theorem 1.2)
for linear recurrences of order n> 1. It states that if the coefficients of a
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linear recurrence converge and the characteristic polynomial has / zeros
whose moduli are equal to a certain number A4, then the recurrence has a
basis of / solutions that satisfy a linear recurrence of order / with charac-
teristic polynomial (X — A)". The two other theorems of the first section
are, first, a useful result that states to what extent the solutions of a matrix
recurrence whose matrices are almost diagonal resemble the solutions of
a matrix recurrence whose matrices are diagonal matrices (Theorem 1.4).
The proof of this theorem will be given in Section 2. The first application
of this result on almost-diagonal matrices is the third theorem of the first
section (Corollary 1.6) which states that if the zeros of the characteristic
polynomial are distinct, and the coefficients are of bounded variation, then
the Poincaré—Perron Theorem is true for this case too (provided that some
minor additional condition is met). We conclude the first section with another
example that shows how Theorem 1.4 can be applied to matrix recurrences
whose coefficients converge fast.
We proceed to the first theorem.

THEOREM 1.1.  Let M =diag(R,, R, .., R, ), with R; € K" such that all
complex eigenvalues of R; have smaller moduli than those of R; , , (j=1, .., L—1).
Let fe Ml such that lim, _, , f(n)eR and {M,} a sequence of matrices in
K** such that

M, —M| =o(f(n))  (n—c0).
Then there exists a sequence {G,} of non-singular matrices in K** such that
G, M,G,=diag(R,,, R,,, .., R;,)
with lim,, , . R,,= R; and

HRJ}T_R;}’IH=O(HM}1_MH) (n—>OO,]=l,, L)>

where Rj, is the submatrix of M, composed of the same rows and columns
as R; in M. Further

lim G,=1

and
|G, — 1| =o(f(n)) (n— o0).

Moreover, if 7\ 1/f(n)-|M,— M| converges, then {G,} can be found

n=

such that >.°°_\ 1/f(n)- |G, —1I| converges as well.
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Proof. See Theorem 3.1 of [6].

Here follows the corresponding result for linear recurrences.

THEOREM 1.2. Consider the linear recurrence given by (1.2) with charac-
teristic polynomial y(X)=(X—ot)--- (X —a,), where o, ..., 0, €C, |o;| = ---
= |oy| and |o\| # |o;| for I < j<k. Let f € M such that lim,_, ,, f(n)eR and
P,— P, (n)=o0(f(n))(n— o0;j=0, ..,k —1). Then (1.2) has | linearly independent
solutions {u'"} such that

Wb M)+ Fbo(mu) =0 (i=1,..1), (1.4)

where b(n)e K (neN) and b;—b;(n)=o(f(n)) (n— oo; j=0,..,[—-1) for
numbers by, .., b,_, €K defmed by

-1
X'+ Y bX'=(X—a)-(X—a).

j=0

Moreover, if 5= > 1/f(n) - |P;(n) — P;| converges, then 3\ s > 1/f(n)
- |b;(n) —b;| converges as well.

Proof. Put &(n)=max,,.,max,. ;< |P,—P;(m)| for neN and let
the associated matrix recurrence be given by (1.3). There exists some
matrix Ve K** V, non-singular, such that V'~ 'MV =diag(R, S) where
M =1im M, and R and Se K"’ have eigenvalues «,, ..., o; and o, |, .., %,
respectively in C. It follows from Theorem 1.1 that there exists a sequence
{G,}, G, e K*F, with

IG, =1 =o(f(n))  (n—0)
and
1G5 V™ IM, VG, — V™ IMV| =o(e(n)  (n—> )
such that

G,V 'M,VG,=diag(R,, S,) (neN),
where lim R, =R, lim S, =S. Let Y, € K"/ be such that R,Y,=7Y, ., and
det Y, #0 and let X,,=(Y,,0) e K/ for all n. Then {U,} ={VG,X,} is
an [-dimensional solution of (1.1). Let y(X)=X'+3!(bX’ be the
characteristic polynomial of R. Clearly, y € K[ X] and y(R)=0 by the
Cayley—Hamilton Theorem. Hence,
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x(M) U, =V-diag(x(R), x(5)) -G, - X,

=W.x(S)-d(n)- X,

=W-x(S)-6(n)-G, -V~ U,

=D,U, (neN), (1.5)

where W is the matrix composed of the last k —/ columns of V, §(n) e K¥ —**
is the matrix composed of the last kK —/ rows of G, — I (in fact, the last k —/
columns of d(n) are irrelevant and can even be taken zero), and D, € KX,
|D, | =00lG,—1||) (neN). Equation (1.5) implies that

Zb U,.,+E,U,=0, (1.6)

where b,=1, E, e K** |E,| = O(e(n) + |G, —1||) for n — co. On evaluating
the lower k — [ rows of (1.6), we obtain k — / equations for / linearly indepen-
dent solutions {u("} of (1.2)

k

l
Z ju51[+j Z kj n+k j =0
Jj=0

j=1

(i) ()
Zb/unl+k I— 1+/+Z (E) 1, Uy n— 7 =0.

j=1

Since b,=1, the last equation enables us to express u'!”,, | as a linear
combination of u{, .., u., , with bounded coefficients, which do not
depend on i. Substituting the expression for ", , | into the first k —/—1

n+k
equations, we obtain k —/— 1 equations

k

/
(1) ! (1)
z J n+j+ Z E /‘/ n+k—j =0

j=2

k

i
’ (i) —
Z j n+k I— 2+]+Z E)/+2/“n+/71 0,
— j=2

where ||E), || = O(¢(n) + |G, — I|). We can repeat the above procedure, using

the last of the k —/— 1 equations in order to obtain an expression for u!”,, ,
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as a linear combination of »”,..,u'", . with bounded coefficients.

Repeating this procedure until only one equation is left we find that

l

Z b.u® i E(k 1= 1) u® =0
—k—

J n+/ K %n+k—j
Jj=0 J !

fori=1, ../ and
IEY ="Vl <ec-(e(m) + |G, =) =0(f(n))  (n— o)

for some constant c. Q.ED

In particular, if we have /=1, in other words, if the characteristic poly-
nomial has an eigenvalue o with multiplicity one and such that all other
eigenvalues have moduli # |«|, Theorem 1.2 states that there exists a solution
{u,} of (1.2) with

Up 11 _(a+5(n)) un:O

with d(n) =o( f(n)) for n - oo, so that u, | /u,—a=o0(f(n)) (n— o0). If, in
addition, >, 1/f(n)-|P;(n)— P,| converges for i=0, .., k—1, then, by
Theorem 1.2, 3>, l/f( )- |(5( )| converges as well. Using that fe.#, we
then have that >, |0(k)| <c-> 7, (|16(k)|/f(k))-f(n)=o(f(n)) for some

constant ¢. Hence, if a #0, then

n—1

u, =uoa” || (140(h)/),

h=0
so that u, /a" converges and, for a suitable choice of u,,

I 1=o(f(n)  (n— o0)
ol

and, for a =0, it follows that
1
, f(n)

Remark. 1f all zeros a4, ..., a, of y have distinct moduli, then there is a
basis of solutions {u'”} of (1.2) (i=1, .., k) such that for all i, lim,, _, . (u'", | /u'")
=ou,. This is the original Poincaré—Perron Theorem (see [13, 15] for
the original papers and see, for the corresponding matrix version [5, 6]
or [9]). Moreover, in [3] Gelfond and Kubenskaya proved that if in (1.2),
P;— P;(n) = O(f(n)) for some real function f with lim, , ,, f(n+1)/f(n) =1
and Z o PB(n) < oo, and the characteristic polynomial y has zeros a4, ... ock
which are nonzero and have distinct moduli, then there are solutions {u'”}

Ui

< 0.

HMS
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with u? =a(1 + O(Y7_, B(n))). We show that this follows from Theorem
1.2 as well: clearly fe .. Let f € .# such that f(n) =o0(f(n)). We have just
seen that there exists, for every zero o of y such that |a| # |o'| for o’ any
other zero of y, some solution {u,} of (1.2) such that u,,+ Ju, —x=o(f(n)).
Since f is arbitrary, we must have u,_ ,/u,— O(f(n)). Hence u,=
C-o"TT;Z4 (1 + O(B(h))) for some constant C. S1nce 117 (L+0O(B(h)))
converges, we have, for a suitable value of C,

ﬁ 1+ O(B(h)))

— o <1 +0 <§ ﬂ(h)>> (neN).

In fact, the result we get is somewhat stronger: if « is a zero of y such that
the modulus of « is distinct from the moduli of the other zeros of y, then
there is a solution u,, =a"(1 4+ O3, p(h))).

Theorem 1.2 in a sense reduces the case that the linear recurrence (1.2)
has converging coefficients to the case that all eigenvalues of the charac-
teristic polynomial have equal moduli.

Subsequently we state and prove a result for the case that all zeros of the
characteristic polynomial are distinct. On the one hand, this condition is
weaker than the condition in the Poincaré—Perron Theorem, which requires
that all zeros have distinct moduli. On the other hand, we have to impose
additional conditions on the coefficients, because in general it is not true
in this case that a basis {u"}, .., {u'®’} of solutions exists such that
lim,,_, (u,,/u,) =a; for all zeros a, (see Example 9.3 and Section 10). In
fact, we require only that the coefficients of the recurrence are of bounded
variation (this condition was also used in work on orthogonal polynomials,
e.g., [10, 11, 17]). We first prove the result in a somewhat more general setting,
i.e., for matrix recurrences.

THEOREM 1.3. Let {M,} be a sequence of non-singular k x k-matrices
with coefficients in the field K=R or C, such that M =lim,,_, ., M, exists

and has eigenvalues o, ..., o, which are all distinct and such that the products
of quotients
Mo o (h
i(h) ‘ (1.7)
e | % 1(/1)

are bounded from above for all m, M and i=1, ..., k — 1, where o,(n), ..., o, (n)
are the eigenvalues of M, that converge to a,, ..., o, respectively. Further
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suppose that Y, |M,— M, | converges. Then there exists a sequence {G,},
G, e K** such that lim, ., G,=G, det G#0, and

G ' M,G,=diag(a,(n), .., o« (n)) (neN)

n+1

if neither of the w; is zero, and

G ' M,G,=diag(a,(n)+96,, ..., ¢,(n)) (neN)

n+1
if ay =0, for numbers 6,,=O(|M,— M, ).

For the proof we use the following auxiliary results:

THEOREM 1.4. Let {A,} = {diag(a,(n), .., a(n))} be a sequence of diagonal
non-singular matrices in K" * such that for all m and p large enough the quotients
[1}_,, la,(h)/a,(h)| are boundedfrom above for all i< j and let {D,} be a
Sequence of matrices in K** such that A, + D, is non-singular for all n and

_o (ID,I/la;(n)]) < oo for all j> L =0, j< k. Then there exists a sequence
{G,,}, G, € K** with

llm anlk

n— oo
and

Gnll : (An + Dn) : Gn = dlag(Pn + Zans aL+l(n)5 () ak(n)) (f’l € N)’
(1.8)

where P, € K™ is the matrix that consists of the first L rows and columns
of A,+D,, R, e KKx=L s the matrix that consists of the last k — L rows
and the first L columns of A,+ D,,, and where Z, is a L x (k— L) matrix
with

“ D, || z a(j)
1Z,1<C"- ) ——— .
/,go | L+l(h)|j:1;[+1 aL+1(])
D
D gy | o
la 1(n)] ap(n)
for some constant C'. Furthermore,
n—1 !
a;(h) D, | a;(q)
|G, —I|| < C-max . ! (1.9)
L7 hno a;(h) () lag (D] ql;[() a;(q)

for some constant C independent of n € N, where the maximum is taken over
all pairs (i, ) such that at least one of the i, j is greater than L.
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Proof. See Section 2.

In this paper, we shall apply Theorem 1.4 only for L=0 or L=1, as in
Corollary 1.6 and in Theorem 7.1. After Corollary 1.6, at the end of this
section, we shall apply Theorem 1.4 to the case that the matrices 4, are
constant.

Lemma 1.5, Let x,(X)=3%/_, P;(n) X7 be a sequence of monic polyno-
mials converging to y(X)=(X—o;)--- (X —ay), where a,, ..., o, are pairwise
distinct complex numbers. If 3°°_ |P;(n) — P;(n+1)| converges for j=0, ...,
k—1, then there exist k sequences of complex numbers o;(n) such that
Iala;(n))=0, lim,_  a;(n)=a; and Y%_,|oa;(n)—o;(n+1)| converges
(neN, i=1,.., k).

Proof. Since the zeros of a monic polynomial depend continuously on
the coefficients we see that for n large enough, y, has zeros o,(n), ..., a,(n)
such that

lo; — o (m)| < %min |ai_a'j|'
i#j

We show that >~  |a,(n) —o;(n+ 1)| converges for all i. Fix ie {1, ..., k}.
Clearly, y,(a;(n))=0 (ne N), we have

i 1) =7, o+ 1)
mln D) =) =t Dt (L= ) ay(m) i

Since y is monic and y'(«a;) # 0, the denominator is bounded from below for
n large enough and it follows that > ,|a;(n)—o,(n+ 1) <oo. In
particular, a;(n) converges and, by the choice of a;(n), the limit can only

be a;. Q.E.D

Proof of Theorem 13. Let y (X)=X*"+P, ,(n) X* '+ ... + Py(n) be
the characteristic polynomial of M,,. Since the coefficients P;(n) lie in the
ring generated by the entries of M, we have 3" |P;(n) —P;(n+1)| <0
for 0< j<k—1. By Lemma 1.5, we conclude that y, has zeros o,(n), ...,
o (n) such that > °° |« (n) —a;(n+1)| converges and lim, ,  a,(n)=a;
(i=1, .., k). Define sequences of eigenvectors f,(n), ..., fr(n) of M, such
that M, f,(n) =a;(n) f;(n) and such that f;(n) converges to f;, an eigenvector
of M with eigenvalue «,. In fact, because the rank of M, —a,(n) I, is k—1
there is some lim,, _, ., p;;(n) # 0, where u;;(n) is the cofactor of (M, — a,(n) I}.),;.
We can now take

Sfi(n)= (ﬂy(”))71 (e (n), ooy py(n))".

Then it is clear that >.7° | f;(n) — f;(n + 1)| converges.
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Put G,=(f,(n), .., fi(n)). Then lim G, =G, with G a matrix of eigen-
vectors for M and G ' M, G, = diag(«,(n), ..., x,(n)). Moreover,

n+1

z G ! G —I”<C Z ‘|G;q+]_GA)1”<OO’

for some constant ¢, so that G, M,G,=diag(a,(n), .. o0y n))+D,,
where |D,||=0(|M,—M,_.|) whence > oD, < oo. Apphcatlon of
Theorem 1.4 (for L =0) immediately yields the desired result. Q.ED

COROLLARY 1.6. Consider the linear recurrence (1.2). Suppose that
"o |P;(n)—P;(n+1)| converges for j=0,..,k—1, and that the zeros
ocl( ) a(n) of the characteristic polynomials y,(X)=X*+ P, _,(n) X*!
+ - +P0( ) converge to distinct complex numbers o, ..., o;., and that the
quotients (1.7) are bounded from above. Then there exists a basis of solutions
{ul™Y, o {uPY of (1.2) such that for i=1, ..,k if o; #0,

n—1

w,=(1+o(1)) [T o;(h)  (neN),

and if o; =0, then

where d(n)=3Y5_|P,(n)—P;(n+1)|.

Proof. Consider the associated matrix recurrence M, x, =Xx,,,,, wWhere
the M, are given by (1.3). By Theorem 1.3, there exists a sequence of
matrices { U,}, such that

U, oM, U, =diag(ay(n), ..., ,(n))

n+1

if none of the «; are zero, whereas if, say, o; =0, then

U . M,U,=diag(a,(n) + O(d(n)), ..., a,(n))

n+1
and where U, converges to U, a matrix of eigenvectors for M. One-
dimensional solutions of the associated matrix recurrence are of the form
(Ui 15 s ty)'s with {u,} a solution of (1.2). For all i, we set y!" =
(IT;Z6 (U, M, U,) ) e;, where e; is the ith unit vector. If o; #0, then
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vi'={ITpZo %, (h)) e;, and if o; =0, then i = (IT;Z, (¢;(h) + O(d(h)))) e;.
Clearly, { U, y'"} is a solution of the associated matrix recurrence. Further

Use,=c(1+o(1))- (51, oy, 1) (i=1,..,k)

for some non-zero constant ¢;. This completes the argument. Q.ED

Condition (1.7), which figures in both Theorem 1.4 and Corollary 1.6,
cannot be dispensed with, as will be shown in Example 9.1. On the other
hand, in practice, it is almost always satisfied (for an example, see Section 10).

Before concluding this section on matrix recurrences, we shall, as an
example, show how Theorem 1.4 can be applied to obtain the following
result of Evgrafov [2].

Consider a linear recurrence (1.2) with 3. |P;(n)—P;| <oo, where
P;=lim,_, ., P,(n). If the characteristic polynomial has zeros o, ..., &, with
0<lo,| < - < la, |, then (1.2) has solutions u'” = o’(1+o(1)).

One of the reasons we give this example is to show how formula (1.9)
applies. In fact, we prove even more, giving an estimate for the order of
convergence of u'”/a”, in the same way as we did above (see the remark
after Theorem 1.2).

i

ProrosiTION 1.7. Let «,.., o, be non-zero, not necessarily distinct
numbers with |o, | < - <oy | and let f: N - R_, be a function such that
lim,,_, ., f(n)=0, Zn 0 ( ) < 00, and 0 <max|e, /o, | <lim inf( f(n+ 1)/6(n))
< 1 where the maximum is taken over those i such that |o;| # |a; . |. Let D,
be matrices with | D, | = O(f(n)). The matrix recurrence

(diag(ay, wr ) + D)) X, =X, 4 (neN) (1.10)

)

has solutions {x\} with

xP=o"e, <1~|—0<
h

For the proof we need the following fact:

I M8

fori=1, ..k

LemMmA 1.8. Let {eR and p: N > R_, a function such that lim,, _,  f(n)
=0 and 0 <{<liminf(f(n+1)/(n))<1. Then

n—1

Y. Blh) "' =O(B(n)).



SOLUTIONS OF LINEAR RECURRENCES 13

Proof. Set A=max, ff(n) and let N be so large that f(n+1)/f(n)>n
for n= N, and some number { <# < 1. Choose n>=N. Since {"/f(n)— 0
(n— o0),

1 = —h - n—h
Wthﬁ( )-C + Z B(h)-C

hO

<nil <C>n h Aé’n NZ]C h QED

h=N n

Proof of Proposition 1.7. By Theorem 1.4 there exist matrices G
converging to the identity matrix, such that

ns

n+ l(dlag(“l LI Ock) + Dn) Gn = diag(“l 9 oo O(k)

and

a h+1

Y. i)

|G, — 1| < C-max T;(n) :=C-max
i (n)

i J

O‘j &;

for all n and 1<, j<k. We show that T;(n)=0(X;_, f(h)). Let { be
such that max(|o;|/|o;; 1 ]) <{<liminf(f(n+1)/f(n)) <1, where the
maximum is taken over those i such that || # |« |. For j<i, T;(n)<
Yo Bh) I j>iand Y0 B(R) |og/og|" converges, then T (n) =
O({") = O(f(n)). If the sum does not converge, then 7;(n) <X _g f(h) " "'
= O(p(n)), by Lemma 1.8. If i = j, then T;(n)= (Zh:n p(h )) Hence we

see that
1G,— 1| =0 <Z T;,-(ﬂ)) =0 < )y ﬁ(h)>.
ij h=n
Hence the matrix recurrence
(diag(oc] 5 vy (xk) + Dn) xn = xn+ 1

has solutions

xD=o"G e, =ale, <1 +0< i ﬂ(h)>>

fori=1, .., k. Q.ED

As in Corollary 1.6 we can apply the result, which is a result for matrix
recurrences, to linear recurrences (1.2) by way of the associated matrix
recurrence. The fact that we can require that lim inf(f(n+1)/f(n)) >
max(|e;|/|o; ;1 |) instead of f(n+1)/f(n)—1 as n— oo was first seen by
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Coffmann [ 1] who showed that the result of Gelfond—Kubenskaya (see the
remark after Theorem 1.2) holds under this weakened condition. Notice
that Proposition 1.7 in fact combines the results of [2, 3].

2. THE PROOF OF THEOREM 1.4

Theorem 1.4 tells us to what degree the entries of a sequence of diagonal
matrices {M,} may be perturbed in order that the solutions of the matrix
recurrence (1.1) M,x,=x, ., and the solutions of the “perturbed matrix
recurrence” (M,+D,) y,=y,,., are asymptotically equal. Namely, if a
sequence {G,} converging to the identity matrix can be found such that
G, !\(M,+D,)G,=M, for n>0, then, for {x,} a solution of the unper-
turbed recurrence (1.1), {y,} ={G,x,} is a solution of the perturbed matrix
recurrence. Then, by |G, — I|| =o(1), we have y, =x,(1 +o(1)).

We proved a somewhat less general version of Theorem 1.4 in [6,
Lemma 4.1], but on the one hand we need the more general version in
Section 7 and, on the other hand, this gives us the opportunity to repair a
small flaw in the proof of the original version. We begin by stating a lemma
that will be used in the proof (and which plays about the same role as does
Lemma 4.2 of [6]).

Lemma 2.1. Let 4,, b, be complex numbers such that [12_,, |2, is
bounded either from above or from below for all m and p and Y _,|b,|
converges. Then for all solutions {y,} of the recurrence

yn+1:)“nyn+bn (neN) (21)

the estimate

n—1 n—1 l
i< T1 |ﬂ»q|~{|yn0|+ 5 |b,|<n MW)} (22)

q4=ny I=ny h=ny
holds. Moreover, (2.1) has a solution {w,} such that lim, _, , w,=0 and

n—1

/
ol < 1 Mq|-z|b/|<n ww) =y, (23)
(n)

q=n h=n,

where z(,,)=z';;;0 if the sum 2, diverges and Y., =72, if the sum
converges.
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Proof. As can easily be checked, the solutions of the recurrence (2.1)
are

n—1
Yum Ay e A (y,,0+ S by .;%)—1>. (24)

l=ny

Inequality (2.2) now follows immediately. If the sum on the right-hand

side converges, we take w, = =2 b, (A -+ -Ano)*‘, whence
Wn:_j'nfl"" 'lno Z bl(ll' ""j'no)ila (25)
l=n
which tends to zero, if 4,,_; - --- - 4, is bounded from above. If 4, _; - --- - 4,

is not bounded from above, it is bounded from below, and in that case w,,
also tends to zero, by

The estimate (2.3) follows immediately. If the sum on the right-hand side
diverges, we must have [ ];°_ i A, =0 (otherwise the products ]_[f,:no [A,] 7!
would be bounded from above). Choose w, =0. Again, (2.3) is immediate,
and

n—1 n—1 / n—1 n—1
wal < T1 Vil X 10-( T 1l )+ S e T1 1l
q=n, IS h=nyg l=n, h=1+1
where n, is chosen such that Xin |b,| <e& for some fixed ¢ >0. The first

term on the right-hand side converges to zero as n goes to infinity, whereas
the second term is bounded by a constant times e&. Q.ED

Proof of Theorem 1.4. (1) We first prove the theorem for L =0.
Set

D
don = max 12
1<j<k |a;(n)]|

and
N = a,(q) ! aj(h)
A,, N Hzla;x []l;[() a_/(‘]) . (%‘; d(l) ;IEIO ai(h) ’ (26)
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where the maximum is taken over all pairs 1 <17, j<k. Then X > ,d(n)
converges and /A, tends to zero as n — co. Indeed, for all , j the expression
in (2.6) on the right of max; ; is a solution of the recurrence

a;(n)
aj(n)‘

that tends to zero as n — oo, by Lemma 2.1. Further, let ¢ > 1 be such that

Yni1= Y, +d(n) (neN)

1
CIMi< max |4y <c M| (2.7)

I1<i, j<k

for any matrix M e K**. That such a ¢ exists is guaranteed by the equiv-
alence of matrix norms in K** Let NeN be so large that A, < 1/20c>
for n>N. We define sequences of k x k-matrices {G'/'} as

GO=1  (n>0)

and, for j=0, n>=N,

GtV -, =G4, - Ay
n—1
GUtD—Li+ Y (4, Ay !
I=N
X(GY) )" DiA (Ao A | (Ao - Ay)
(2.8)
where
(G%+l)_1k)1zc/=O
if the sum
) <H wi D (29)
=0 neo 4p(h) .
diverges and
(G%+1)_Ik)pq
= —< (A A) TG )T DA A 'AN)>
I=N pq

if the sum (2.9) converges.
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We first show that {G'} converges to I, as n— oo and, in addition,
|G — 1| <1/5 for all j>0 and n>N. For j=0 this is trivial. Suppose
it is true for G'. In particular, it follows that |G| <2, [(GY) ' <2.
By (2.8),

(O (G(””—Ik))pql
nfl h
,h)

!

—1 —1
/+1 DIAI 1H1 l_[

)

h

where >, stands for Z”” if the sum in (2.6) diverges, and for X ;2 , if the
sum in (2.6) converges. Hence, by (2.7),

GGy D =1 <2c°4, (2.10)
and
IGY* D — I || <4c’4,<t  (n=N). (2.11)

It follows that G/ — I, as n— co.
We now show that for n> N the sequences {G'/’}; converge to a limit.
Set M;=sup, . |G =G~ V| (j=1). Note that M, <1/5. Further,

(G~ =Gy =) = (G~ (G D= GNGY )~ <4u.
Then

M <M; - [(GD) TGP = 1)

J

n—1

<G = (G207 DA (A4, )

X(An71 R .AN)*]

whence, by the definition of the numbers G and by (2.7) and (2.10),

M,+1\(2c max A, + 8¢? max A )M,\ZM (j=1).

n=N n=N

If we now set, for n> N,

anG(O i (G(1+1> G;j)),
=0
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then |G, | =G| +X7~, M;< 0 and

1G,~GYI< Y M;<2'75

Jj=r+1

so that {G"}, converges to G, for n> N as r — oo. In addition, the estimate
(2.11) holds for all GY* ", hence for G,,. This yields (1.9). It remains to be
shown that 4,+ D,=G, ., 4,G,". If we take limits in (2.8), letting j — o0,
we find

n—1
G,—I;=G, 4, - ‘AN<GN_Ik+ Yo (A Ay
I=N
KGLL DAL (A A (A, A (202)
whence
Gn+l_Ik:GnJrlAﬂG;l(Gn_]k)A;l +DnA;1
so that

Gn+1An(i:1Aé_1:]k+"DnA;4

and from this it is easy to see that 4,+ D, =G, 4,G, . This identity
can, moreover, be used to define G, recursively for n=N—1, .., n=0.

(2) We now prove the general case. Before we proceed, it is useful to
introduce the following convention for matrix norms of submatrices of
matrices in K**: given some submatrix B that is composed of a selected
subset of the rows and columns of a given matrix 4 € K**, we extend B
to a matrix Ce K** by letting the entries in the rows or columns that
do not occur in B be zero. Then we let | B|| = | C|. It may be assumed that

7o (ID;ll/la;(I)]) converges for j> L and diverges for j < L. We set

din)= max 1D, |

L+i<j<k |a;(n)

and we define 4,, by (2.6), except that the maximum is taken over all pairs
i, j with L+1<1i, j<k, and similarly we define 4, by (2.6), where the
maximum is taken over all pairs 7, j with 1 <i< L, L+ 1< j<k. Note that
in particular it follows that d(n) <Y, d(/)< 4, for n= N. As in part (1)
of the proof, >;°,d(!) converges and both A, and A tend to zero as
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n— o0. We let Ne N be so large that A4, < 1/40c¢? and A, < 1/4¢? for n>= N,
where ¢ is as in (2.7). Put

0,

P
A D — n
n+ n < S

R > (neN)

n n

where P, e K*, S, e Kk—k=L We show that the equation
X, 1=(P,X,+0,)(S,+R,X,) ! (X, e K="t n>=N) (2.13)
has a solution {X,} that converges to zero. Set
P, =diag(a,(n), ..., a,(n)), S, =diag(a, . (n), ..., ax(n)),
and
0,=(P,—P)X,+0, (n=N).

We define sequences { X/}, {Q}, {S} for j=0, n=N by X'?=0,
X =0 for all j and
0V =(P,—P,) X/ +Q,, SP=8S,+R, X,
XD =(P X+ O)(ST)
We first show that { X'/} converges to zero as n — oo and that | X{| <1
for all j and n> N, and further, that S/ is invertible, so that the sequences

are well-defined. For j =0 this is trivial and we suppose that it is true for
{X}. Then

1o, <2|D

}7“7

. 1
HSi/)—SHI<2HDnH<7C min_|a, ()] <[|(S}) "],

20¢% L+1<i<k
so that S'/ is indeed invertible for all n> N, and

1(S5) Ml
=2~ 1D, 1"

IS~ < (2.14)

We may apply part (1) of the proof to S/ and obtain some sequence
{H} in KF~5%~L such that |HY—1, .| <84,<1/5 and SV =
H,. S, (HY)~". An explicit expression for X!/*! is given by

n—1

XY= N Py P QP HP(S) T (S, e S T HD) T
I=N

n—1
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whence

n—1 n—1

(XD HD), < Y NQYHP(S) ™, 1
=N

= h=I1+1

a,(h)
aq+L(h) ’

for ISp<L, 1<g<k—Land, by |[H|<6/5 |(H) | <6/5,
IXU+D | <4e2A, < 1. (2.15)

We show that, for n fixed, the sequences { X’} ; converge to limits X,,. For
n=N this is obvious and X, =0. Suppose it is true for N <n<m. Because

X:}’{I }) = (P;WX(W{-'— b + (Pm - P;H) ng{) + Qm)(Sm + RmX(m])) - (216)
for j >0 and by (2.14), we can take limits in (2.16) and let j » co. Then the
right-hand side converges to the right-hand side of (2.13) and thus X!/

n+1

converges to some limit X, , such that (2.13) holds. In addition, by (2.15),
1 X, <44, <]1.

In particular, X,, > 0 as n— oo. (Note that for all 1 <i<L, L+1<j<k
the sums that occur in the definition of A/ do not converge, because
otherwise >.7°_ (D, ||/la;(n)|) would converge for at least one i < N, which
is in conflict with the assumption. Hence Y, stands for >3~ ' for these
pairs #, j in (1.9).)

Setting

we have that |[H" —1|=X,| and

(2.17)

n+1

(H\)"" (4,+D,) H£,1>=<P"_X”+‘R" ’ >

R R,X,+S,

We now go on to show that the equation
Y, (P,— X, R)=(R,X,+S,) Y, +R, (Y,eK" "5 n=N)

has a solution {Y,} that converges to zero. As before, we use an iteration
method. Let P, S/, be as above and set

" __ = ai(q) = Cl/(h)
An—frla}x []l;[() a_/(‘]) (%‘;d(l) /,1:[0 a;(h) ’
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where the maximum is taken over all pairs i, j with L+ 1 <i<k, | <j<L.
Again, A tends to zero as n— oo, by Lemma 2.1. Note that the sum
converges and A <c,; 4, for some constant ¢, > 0. Further we let N' > N
be so large that A" <1/5¢? for n > N'. For simplicity, we write N for N'.
We define sequences { Y/}, {R} (n>N, j>=0) by
RY=R,+ (X, R,+P,—P,) Y +(R,X,+S,—S,) Y (2.18)

n+1

and
Y =0, yutbp =g yu+b L R (n=N, j=0).

n+1

An explicit expression for Y/ is given by

n—1
V=SS (YR (S s s R

I=N
X(P;,l e P’N)> (P;il e .P’N)*l‘

If [RY=D| <5 |D,]| for n=> N, then

n—1
S (S) e SN TS T RY TP PY)
=N
n—1 1—1 a(h)
<5¢? d(l :
‘ lgiél‘l’l}‘a+x1<f<" /gzv ()hl:[N aj(h)’

and the sum on the right-hand side converges, because the quotients
w_'v (la;(h)/a;(h)|) are bounded. If we choose

Y == % (Siy eSS RY TP Py,
I=N
then
YD ==Y (S) ST (S) T RYTI(P P, (219)
I=n
whence

1Y <S4, < 1.

In particular, Y’ — 0 as n — oo. Further, by (2.18) we also have ||RY || <
5|D,| for n=N.
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We show that the sequences { Y/} , converge to limits Y, as j — co. Let
m;=max,. y | Y — Y V|. We have m, <5¢°4% < 1. By (2.18),

I(S) ™ (RY ™V = RY =) <4m;_yd(]).

Using expression (2.19) we find that, for j =2, 1<p<k—L, 1<g<L,

(Y9 — YU=D) 1< Y [(S)~ (RV-D—RY=2), )| ’rf a Ml
I=n |ap+L(h)|
so that
Y9 — Y-V <4cm, 45,
whence

2 " 4
m;<4cm;_ max A,<sm;_,

n=N

If we define ¥,=37" (Y(”1 Y7 for n> N, which is well-defined in
view of (2.18), then clearly YY) > Y, asj— oo, and

1Y, <5c24,<1  (n=N).

Setting

I 0
H53>=<YL / > (n=N),
n k—L

we have that |H> —1I| =Y, | and

(H£11+1 5:211)71(AM+D”)H21>H512) <P — X, 1R, 0 >

0 R,X,+S,
Finally, we note that R, X, + S, is invertible and Y, (||R, X, + S,,— S, |I/
|a;(n)|) < oo for j> L by (2.14), hence we may apply part (1) of the proof
to the matrix block R,X,+S,, thus finding matrices G, e K* L+~
(n>= N) such that

( ’n+ 1)71 (Ran + Sn) G’n = diag(aLJrl(n)a (] ak(n)) = S;’l

and

IG,—I| <crd, (=N
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for some constant ¢, > 0. Finally, we set

1 0
G =HOLHg® ('L
(s g )

and Z,= — X,

n

+1- The estimate for Z, follows from ||X,, | <4c?A4.,.

3. MOBIUS-TRANSFORMATIONS: GENERAL PROPERTIES

A way to study matrix recurrences M,x,=x,,,; of order two is to
consider the matrix M, instead of representing a linear map from C?
to C?, as representing a map from the one-dimensional complex projective
space P'(C) to itself. In fact, if M,=( %), we let F,(z)=(a,z+b,)/
(c,z+d,) for neN. Instead of studying the behaviour of solutions of the
matrix recurrence, we study the orbits of points in P'(C) under the action
of the sequence of Mobius-transformations (or fractional linear maps, as
they are also called) {F,}. The advantage of this point of view is that we
can use the topology of P!(C). Note that F, is not a constant map because
det M, # 0. First we recall a few classical, but important properties of Mobius-
transformations. All of them can no doubt be found in the literature, but
it is useful to put them together for easy reference.

We take the usual topology on P'(C), ie., we take the usual topology
on C, and let P'(C) be the one-point compactification. It is well known
that P'(C) can be identified with a sphere S? in R, e.g., by stereographic
projection. This enables us to define a distance on P'(C), which is
invariant under maps in SU(2, C), namely, let d(z, w) = |z—w]|/(1 + |z|*)"?
(1 +|w]*)"? for z,weC and d(z, 0)=1/(1+]z|*)"? for zeC. d(z,w)
comes from the usual distance on the sphere in R®, by stereographic projection.
The following lemma collects some essential properties and identities that
we shall need in the sequel.

LemMa 3.1. (1) A Mébius-transformation is a homeomorphism of P'(C).

(2) Mobius-transformations leave the harmonic double ratio (z,, z,; z5, Z4)
=(z,—2z3)/(zy —z4) : (25— 23)/(z, — z,4) invariant.

(3) A Moébius-transformation which is not the identical map F(z)=z
has either one or two fixpoints in P'(C).

(4) For F a Mébius—transformation, w, z # oo, we have
(F(z) —F(w))*=F'(z) F'(w)(z —w)~

(5) If F has two fixpoints { and n, both # oo, then F'({) F'(n)=1. If
F has one fixpoint {, then F'({)=1.
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(6) If F has two fixpoints {, n and { # oo, then
F(z)=¢ z—¢
( 0.

=F . 3.1
Flo)—n (©) . (3.1)
If F has only one fixpoint { # oo, then
1
F(z)—C_z—C+c (3.2)

for some ceC.

Proof. Parts (1)—(3) are classical, and can be found, e.g., in [12, 16].

I have not been able to find a reference for (4)—(6) but the proofs are
very simple.

(4) This follows from (2) by taking z, =z, z,=w+h, z;=w, z,=z+h,
and sending /4 to 0.

(5) This follows from (4) by taking z={, w=#. For F parabolic, see (6).

(6) From (4) and (5) it follows that

2 2
(25 i (=
F(z)—n z—1
from which (6) follows up to a plus or minus sign. That the sign must be
plus follows if we realize that, by continuity, the sign must be independent
of z. Taking z = {+/ and sending & — 0 shows that the sign is indeed positive.
Now suppose that F'is parabolic with fixpoint {. Let G(z) =1/(z — {). Then
GFG ™! is parabolic with fixpoint oo. It is easy to see that a parabolic map
with fixpoint oo is of the form z — z + ¢ for some ce C. Formula (3.2) now
follows immediately. Furthermore, formula (3.2) shows us that F'({)=1
if { # o0. QED

We recall Klein’s classification of Mobius-transformations (see, e.g.,
[12, 16]): If F has exactly one fixpoint, it is called parabolic; if F has
exactly two fixpoints {, #, then it is called hyperbolic if F'({) is real and not
1 or —1; it is called elliptic if |F'({)| =1; and if |F'({)| #1 and F'({) is not
real, it is called loxodromic. If { = co we can define, with abuse of notation,
F'({)=F'(y)~' (or =1 if F is parabolic). This is consistent with the fact
that if G is another Mobius-transformation, then G({) is a fixpoint of
GFG~'if { is a fixpoint of F and (GFG ') (G({)) =F'({). As we shall see
in the next sections, the numbers F'({), for { a fixpoint of F, are a very
important indicator of the way in which the solutions converge. Finally, if
F is a Mobius-transformation, associated to a matrix M e GL(2, C) in the
natural way (as indicated above), then the fixpoints of F correspond to the
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eigenvectors of M ((y,, y,)" is an eigenvector of M if and only if y,/y, is
a fixpoint of F (where 1/0 = c0)) and the numbers F'({) correspond to the
quotients of eigenvalues of M. The easiest way to see this is to consider
GFG " with fixpoints 0 and co (or only oo, if F is parabolic) instead of F.
In this case, GFG ' is of the form GFG~'(z) = Az (or GFG~'(z) =z + ¢ for
some complex number ¢ if F is parabolic).

4. SEQUENCES OF MOBIUS-TRANSFORMATIONS

We now consider sequences of Mdobius-transformations {F,}. In this
section we derive some results that enable us to study the behaviour of
solutions of recurrences

Fn(z}1):Z)1+l (}’IGN). (41)

First of all, in order to get a global impression of what one can expect, we
study the behaviour of solutions of recurrences F(z,) =z, ,, i.e., where the
sequence {F,} is a constant sequence. We shall see that the number F'({),
where { is one of the fixpoints of F, plays a crucial role. Using formula
(4.1), we see that

zZ,—

s
t
(=]
|
e

Z,—

=

N
=)
|

=

where {, # are the fixpoints of F. We derive immediately that if F is hyper-
bolic or loxodromic, and { is the fixpoint for which |F’'({)| <1, then all
solutions {z,} but one converge to {. The one remaining solution is the
constant solution {#}. On the other hand, if F is elliptic, then except for
the two constant solutions {{} and {7}, none of the solutions converge
to the fixpoints, but remain on fixed circles {zeC: |(z—{)/(z—n)| =c}
(ceR). If F is parabolic, then formula (2.2) shows that

1 j—
Zn—i_ZO—é’

+ nce,

so that all solutions converge to the fixpoint (.

DEerFINITION. A fixpoint { of a Mobius-transformation F is called hyper-
bolic, if F is hyperbolic or loxodromic. It is called elliptic if F is elliptic, and
it is called parabolic, if F is parabolic. If { is a hyperbolic fixpoint, it is
called attracting (resp. repelling) if |F'({)| <1 (resp. |F'({)| >1).
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DEFINITION. A point { € P'(C) is called an attracting point of the recurrence
(4.1) if there is a neighbourhood U of { and some number N such that any
solution {z,} that enters U for some n> N (i.., z, € U) converges to .

The following lemma gives four elementary, but important, facts about
convergence of the solutions of a recurrence z,,, , = F,(z,,).

LEMMA 4.1. Consider the recurrence
Zn+l:F)1(Zn) (”GN) (41)

for {F,} a sequence of Mobius-transformations.

(1) If two solutions {z\"} and {z?’} of the recurrence converge to
some limit point &€ P(C), then for any two solutions {w'"} and {w'?} of
the same recurrence and for any ¢ >0 there is a number N € N such that for
n= N either dw'V, &) <e or dw'?, &) <e (or both).

n
(2) If the recurrence has three solutions, two of which converge to
some limit point {, whereas the other one converges to some other limit point

n, then all solutions except one converge to (.

(3) If the recurrence has three solutions, converging to three distinct
limits, then all solutions must converge, and any we P'(C) is the limit point
of exactly one solution.

(4) If the sequence {F,} converges to some limit F, and the recurrence
has some solution {z,} converging to a limit point £, the & must be a fixpoint
of F.

Proof. (1) We may suppose that all four solutions are distinct. Suppose
that d(w)’,&)>e¢ for j=1,2 and n; - oo. Then either |w\”—&|>a-¢ or
[lw))—1/¢| >a-¢ for some a>0. Hence the harmonic double ratios
(20, 225 wil, w2)) converge to 1 as i — co, which is impossible.

(2) This is an immediate consequence of (1).

(3) This again follows simply from the invariance of the harmonic
double ratio.

(4) By continuity, F,(z,) must converge to F(&). Q.ED
The following corollary follows directly from Lemma 4.1(1).
COROLLARY 4.2. If the recurrence (4.1) has an attracting point { € P'(C),
then there is at most one solution of (4.1) that does not converge to (.

If F is not “close” to the identity map, then d(F(z), z) is small only if z
is close to some fixpoint of F. Hence in general, if the solutions of a recurrence
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F,z,)=z,.,, converge to some limit point, either this limit point must be
the limit of fixpoints of F,,, or (a subsequence of) the sequence { F,,} converges
to the identity map. In the section of examples, we shall show that it is possible
that the fixpoints of the maps F, converge, but that the solutions do not
converge at all (e.g., Examples 9.3 and 9.5). or even converge to other limit
points (Example 9.2). Moreover, it is possible that there are infinitely many
converging solutions and infinitely many non-converging solutions. In order
to have convergence of the solutions to the limits of the fixpoints, we must
impose conditions on the way the fixpoints converge and on the numbers
F'(¢,) as well ({, a fixpoint of F,). Situations where we can obtain neat
convergence results occur if the fixpoints are, in a sense to be specified,
“sufficiently hyperbolic” (see Example 6.4), and also if the fixpoints are of
bounded variation, ie.,if Y., d(,,,, ) and X, d(#,,n, . ) converge for the
fixpoints {,,, #,, of F,, and if they do not converge to the same limit. In order
to study the latter case, we shall first have a look at the case where the F,
have one fixpoint in common. This is the subject of the next section.

5. INHOMOGENEOUS FIRST-ORDER RECURRENCES

In the preceding section we studied the asymptotic behaviour of solutions
of a recurrence given by a sequence of Mobius-transformations, where all
Maobius-transformations are the same. We have seen that there are, grossly
speaking, three types of behaviour (hyperbolic, elliptic., and parabolic) but
in either case, there are solutions that converge to the fixpoints. The next
difficult case we turn our attention to is the case where the Mobius-trans-
formations are not the same, but have one fixpoint in common. In this case
there is an explicit formula for the solutions of the recurrence, which allows
us to study in detail what types of asymptotic behaviour can occur. We
shall see that in this case there is a much richer variety of asymptotic
behaviour, even if both fixpoints of the Mobius-transformations converge:
in that case there are not always converging solutions (except for the constant
solution { oo} of course); see Section 9 for examples where the convergence
behaviour is not so neat. The most important result of this section is that
if the fixpoints are of bounded variation (and not converging to equal limits),
the asymptotic behaviour of the solutions depends entirely on the derivatives
of the Mobius-transformations in the fixpoints, a result that will also hold
if the Mobius-transformations do not have a fixpoint in common. But this
will have to wait until Section 7.

If F is a Mobius-transformation with infinity as a fixpoint, then F is of
the form F(z)=az+b with a, b complex numbers. If F has ## o as a
fixpoint, and G(z)=1/(z—#), then GFG~"' has infinity as a fixpoint. In
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particular, we have G(F(z))=a- G(z)+ b. Suppose F has another fixpoint
{# 0. Then G'({)- F'({) =aG'({), hence a=F'({) and b =G({)(1 — F'({)):

1 1 (1-F'(0)
—F(0). i 5.1
F(z)—n Fo z—;7+ {—n 1)

If 7 = oo, then G is the identity, so that just
F(z)=F'({)z+ (1 -F'({)) . (5.2)

In this section, we investigate the solutions of a recurrence F,(z,) =z,
where the F, have a common fixpoint #. As is clear from the preceding
discussion, we may assume that # = co. In other words, we study recurrences
of the type

Zn+l:inzn+bn (bn:é’n(l_/ln);neN) (53)

(where {,, is the finite fixpoint of F,) which is just a linear inhomogeneous
recurrence of order one, and can be solved explicitly. In fact, as can easily
be checked, its solutions are of the form

n—1
Zy=Ay_1- - Ao <zo+ Y beldy - o -10)1>. (54)
k=0

Using the identity b, ={,(1 —4,), we obtain an alternative expression for
the solution

n—1

2, =t Ay Ao <20_Co+ Y (Ao i )I(Ck_ék+l)>'
k=0

(5.5)

In the remainder of this section, we assume that the fixpoints ¢, of F, are
of bounded variation, i.e., that > ,|{,—{, .| converges. We shall see
that the behaviour of the solutions of the recurrence F,(z,) =z, ., depends
entirely on the products of the numbers F,({,). We put together the different
important cases in a theorem.

THEOREM 5.1. Consider the recurrence

Fn(zn):Zn+l (HEN), (56)

where F,(z)=A,z+b, has fixpoints {, and oo (neN). If the sum
n—01Cu—Cuy | converges, then

(1) ITIi o |Fl)l=0and T1L_,, |Fi()| is bounded from above for
all m, p then all solutions {z,} #{ 0} of (5.6) converge to { =lim,, _, . (,,.
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(2) IFTIe o |Fil) =00 and T17_,, |Fi(Ci)| is bounded from below
for all m, p, then all solutions of (5.6) converge to oo except for one solution
that converges to (.

3) IfO<m<TIi_o|Fi(&) <M for all n and real numbers m, M
then (5.6) has one solution that converges to (, whereas all other “finite”
solutions {z,} # {0} do not converge. Moreover, if T1;7_, |F(,)| converges,
then all finite solutions {z,} converge to circles {zeC: |z—{|=r} for reR,
but they do not converge to single points, unless 11;_, Fi({;) converges.

Furthermore, in cases (2) and (3) we have the equality
Zn_cnz(l() e 'infl)

x<z0—cb+-C—-§j(zo--~-xk)'<ck—ck+n> (5.7)
k=n

for all ne N, and for some complex number C. (The equality is also valid if
the sequence {,} is not of bounded variation.)

We shall use the following fact in order to prove the theorem:
LemMmA 5.2. If a, and b, are sequences of complex numbers, such that

>0 |by| converges and |a, ., /a,| <M for all n and k >0, then 3 °_, a, b,
=o(a,) as n — 0.

Proof. |X0_, acbi| <M la,| -2, |bl. Q.ED
Proof of Theorem 5.1. (1) We use formula (5.5). Clearly, 4,=
F,(¢,). Let A=sup,, , |4, -----4,|. Take ¢>0 and N so large that

v 18— 8yl <é&/A. Then, for n >N,

(io. 'ln—l) Z (AO ~lk)7l (Ck_é:k+l)

N
«%~~wnA<zMw~~m|%m—gﬂQ
k=0

n—1

+4- Z I —Cin -

k=N+1

The first term on the right side tends to zero as n— oo, and the second
term is smaller than e. From this and (5.5) it follows that z,—{,, tends to
Zero as n— oo.

(2), (3) In these cases, the sum 70 (Ao - -Ap) ' (Le—Crsn)
converges to some number Ce C. Thus, formula (5.7) follows immediately
from (5.5). If we choose z,={,— C, then
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= Z ()~k+1 e ')‘;7—1)(Ck_§k+l)~
k=n

In case (2), we use Lemma 5.2 for a,=(Ag - --- -4x) " and b ={, — {4ty
which shows us that z, —,, tends to zero as n — oo. In case (3), we have
Ao+ -++ +A,_1| <M, so that z,—{, tends to zero as n — co. On the other
hand, if we choose z, #{,— C, we see that z,—{,=(17_¢ Ax)(c+o(1))
for ¢ #0. From this fact, it follows that z, — {, converges to oo in case (2),
and does not converge in case (3), unless [[77 oA, <oo. If [T/, |4,| < o0,

then z,, — {,, converges to the circle {ze C: |z| =c 1., |4,1}- QED

The section of examples (Section 9) shows that things are not so easy if
the fixpoints are not of bounded variation. In that case, it may happen that
none of the solutions converge (except for the constant solution {co}), or
that only some of them converge.

Comparing the results of Theorem 5.1 with the behaviour of the solutions of
the “constant recurrence” F(z,)=z,,,, as discussed in the beginning of
Section 3, we see that in cases (1) and (2) the solutions display “hyper-
bolic” behaviour, with { the attracting limit point in case (1) and the repelling
limit point in case (2), whereas in case (3) the solutions display “elliptic”
behaviour.

6. STABILITY

Let {F,} be a sequence of Mobius-transformations with converging
fixpoints. This section is concerned with the case that at least one of the
limits { of fixpoints is stable, i.e., that solutions {z,} of the recurrence
F,(z,) =z, that are close to { for n large enough, remain so. For example,
this phenomenon can be observed in cases (1) and (2) of Theorem 5.1 for
one of the limits of fixpoints, and in case (3) for both. The aim of this section
is to show that when this situation—that will be defined more precisely—
occurs, then there is indeed a solution that converges to the limit point (.
Finally, we shall see that although some solutions converge to ¢, this will
in general not be the case for all solutions. To begin with, we define what
is meant by stability.

DEFINITION.  Let {F,} be a sequence of Mobius-transformations, and
{eP'(C). A neighbourhood basis {U,}, of { is called stable (under {F,})
if for each U, there is a number n(a) and a neighbourhood ¥V, = U, such
that for any sequence {U,}, converging to {, the corresponding sequence
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{V,}, tends to ( as well and such that for any solution {z,} of the
recurrence F,(z,)=z,,,, if z,, € U, for some m>=n(a), then z, eV, for
all n=m.

A point e P'(C) is called stable with respect to a recurrence F,(z,) =z, ,
(or a sequence of Mdobius-transformations {F,}) if it has a stable neigh-
bourhood basis under {F,}.

Notice that there is no loss of generality if we take U,={zeP'(C):
d(z, {) <a} for «>0. We can now state the main result of this section.

THEOREM 6.1.  Suppose that { e P'(C) is stable with respect to the sequence
of Mobius-transformations {F,}. Then the recurrence

F(z,)=z2,.1  (neN) (6.1)

has a solution that converges to {, and for every neighbourhood U in the
stable neighbourhood basis there is some solution {w,} such that w, ¢ U for
all n large enough.

Before we arrive at the proof of this result, we first prove another result,
which is in itself not without interest. It says essentially that if the recurrence
(6.1) has for every neighbourhood of some point { € P!(C) a solution that
remains in this neighbourhood from a certain index on then there is a solution
that converges to {, provided that there is also a solution that comes not
too close to (.

THEOREM 6.2. Suppose that for some (eP'(C) for each &¢>0 the
recurrence (6.1) has a solution {z,} ={z,(¢e)} such that d({, z,) <e for all
n>= N(e), and furthermore that there exists some number ¢,>0 and a
solution {w,} of (6.1) such that d({, w,)> ¢, for all n>N. Then (6.1) has a
solution that converges to {. Moreover for each n, w, is the limit point of a
sequence {z,(&;)}; such that e; — 0, if and only if all solutions except for
{w,} tend to (.

Proof. Without loss of generality we may take N=0 and {=0. In that
case we can use |z| instead of d(z,{) for zeC. Put G, (z)=z/(zw, '+ 1)
(neN). From |z|<e<g, it follows that |G, (z)| <e/(l —¢/gy) and if
|G (2)] <&, then |z| =G, (G,(2))] <é¢/(1 —¢/gy). In particular, z, —0 if
and only if G,(z,)>0 (n— o). The recurrence G, ! F,G,(z,)=2,.,
has a constant solution { oo}, so it is an inhomogeneous linear first-order

recurrence. By (5.4), its other solutions have the form

Zn:(l()' 'lnfl)(zo_l—rn) (HEN)' (62)
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We now have sequences {¢;} and {c¢;} such that ¢; >0 as i > oo and
(o« -+ Ay )e;+T,) <e; for n=N(eg). (6.3)
Let ¢ be a limit point of the sequence of the ¢,’s. There are two possibilities:

(1) c is finite. Then take N’(e;) the minimum over the N(e;) where
g;<e; and [¢c—c;| <3/2 |c;—c;|. This implies that

(Ao -+ - Ay e+ T <&+ (Ao« -+ - Ay_i)(c— ;)| <4

for n> N'(g;). Hence, the solution corresponding to ¢ in the expression
(6.2) converges to 0.

(2) ¢=oc0. The solution corresponding to the value c¢=o0 is {w,}
itself, which of course never can converge to 0. Inequality (6.3) implies that

g+e

|Ciicj|

Ao« A, 4| < for n>max(N(e;), N(¢;)),

and the term on the right-hand side tends to zero as j— oo, hence
Ao+ -+ -4, must tend to zero as well. But in that case,

|Fn(/10 T 'A‘nfl)| <8i+ |Ci()‘0 Tt ')‘}171)| <2£i

for n large enough. Hence every solution distinct from {w,} must converge
to zero. Q.ED

As Example 9.6 in Section 9 will show, the existence of the solution {w,}
that remains “far from” { is really necessary.
We use this result for the proof of Theorem 6.1:

Proof of Theorem 6.1. Since { has a stable neighbourhood basis with
respect to the { F,}, the recurrence (6.1) certainly has, for any neighbourhood
of {, some solution that remains in that neighbourhood from a certain
index on. In order to apply Theorem 6.2, we must show that there is some
solution that does not approach { too closely.

Let U= U, be one of the stable open sets belonging to this basis and
V' = U the corresponding V,. We may assume that the closure ¥ of ¥ is not
the whole P'(C). Put N=n(a). Let, for n> N, E, be the set Uu F'(U)
U U(F,_ - Fy) ' (U). Clearly Ey=UcV, and EycEy, ,Ex.»
< ... and E, # P'(C) for all n since otherwise for all solutions {z,} of (6.1),
z, € Vfor n = n, for some n,, which is absurd. Further, all E, are open sets.
Hence, for the complements E§ > E;_ |, > ---, which form a decreasing
sequence of closed sets, the intersection (), E¢ is not empty. Take some
solution {w,} of (6.1) with wy e N7 v E;. Then w, ¢ U for all n> N.

QED
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Combining Theorem 6.1 and Corollary 4.2 we get the following result:

COROLLARY 6.3. If {ePY(C) is a stable attracting point of the recurrence
(6.1), then all solutions except one of (6.3) converge to {. Moreover, if the
stable neighbourhood basis extends to P'(C)\{n}, then the remaining solution
converges to 1.

As an example, we prove a simplified, non-quantitative, two-dimensional
variant of Theorem 2.1 of [ 6]. (The result we prove here is largely a special
case of the theorem mentioned but it is only for the sake of showing how
the results of this section can be applied that the example below is given.)

ExamPLE 6.4. Let a sequence of Mobius-transformations F, be given
by

F o) =t2E P ey, (6.4)
qnz+sn
where
I fs,| <1, z (s, —|r)=o0,  lim ||Pn||+||qn||:0
_ n—oo |8, —|I',

Then all solutions {z,} of (6.1) except one converge to 0, whereas the
remaining solution converges to co. If |¢,|/(|s,| —|r,|) is only bounded,
then all solutions except one converge to 0.

Proof. 1t suffices to show that z=0 has a stable neighbourhood basis
(whose sets U, cover C in case |q,|/(|s,|—1r,])—0) and that every
solution close to z=0 converges to 0.

Choose 0 <¢ < oo arbitrarily. Then, if |z,| <e,

Ir,le+p,]
|Zn+l|<|sn| | |n
nl —1qnl €

provided that |g,|e<|s,| and {,<e<n,, with {,, 1, the zeros of |q,| X?
—(Is,| —1r,|) X+ |p,|, where {, converges to 0. In the case that |g,|/
(|8, —Ir,|)— 0 the second zero #, converges to oo, in the more general
case only |#,| > M >0 for n large enough. If |z,| <(,, and 2 |g,| e<]s,],
then

Il 1z, 4 1pal _ 20071 12,0 +1P,])
|Zn+l|\| | <

<2C}1+2 |pn|/|sn|a
Sl — |Qn| |Zn| |Sn|
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where the right-hand side tends to zero. Hence, we have a stable neigh-
bourhood basis of z=0 which extends to C if |gq,|/(|s,| —|r,.|) = 0. (For
U,={zeC:|z| <e¢}, we have

Va={zeC:lz| <max(20, +2 |p,|/Is,|. )}

for N =n(a) so large that all conditions 2|q, | e<]s, |, {, <e&<n, are satisfied
for n = N.) Hence by Theorem 6.1 and the remark below Theorem 6.2,
there is a solution that converges to 0. We show that all solutions close to
z=0 converge to 0. Take 0 <e¢<1, and 8’=\/5<|z,1| <1. Let N be so
large that |p,| + |g,| <é&(|s,| —|r,|) for n= N. Then

|rn| |Zn|+8(|sn|_|rn|)

s, | —&(ls, | = 1r,1) |2,]

|Zn+1|<

|rn|(1 _8’)+8’ |Sn|
T |+ s, |(1—¢)

|2, |

and since [T, |r,/s,|=0, also TT,_,((Ir,| (1—¢&)+&" [s,)/( |r,]+
|s,,| (1—¢")))=0, so that in the end |z, | becomes arbitrarily small. We can
now use Corollary 6.3 to show that in fact all solutions except one converge
toz=0. Q.ED

COROLLARY 6.5.  If the sequence of Mébius-transformations { F,} converges
to some Mobius-transformation F which is either hyperbolic or loxodromic, then
all solutions of the corresponding recurrence (6.1) converge to one of the fixpoints
of F, one solution converging to the fixpoint n with |F'(n)| > 1, the other solutions
converging to the other fixpoint (.

Proof. Tt suffices to take { =0 and # = co. Then F(z)= Az with |1| <.
Now the above example (or Theorem 2.1 of [6]) can be applied. Q.ED

Mandell and Magnus [ 8] already showed that in this case all solutions
except one converge to (. In fact, this result also follows from the matrix
version of the Poincaré—Perron Theorem (as can be seen if we apply Theorem
1.1 for k=2).

7. SEQUENCES OF MOBIUS-TRANSFORMATIONS
WHOSE FIXPOINTS ARE OF BOUNDED VARIATION

The aim of this section is to show that if {F,} is a sequence of Mdbius-
transformations, and the fixpoints {,, and 7,, of the F, are of bounded variation
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(ie., thesums >, d({,, (.. )and >, d(#n,, ", ) converge) and converge
to distinct limits, then the behaviour of the solutions of the recurrence

F(z,)=z2,.1  (neN) (7.1)

behave as if the fixpoints {,,, #, were constant for all n, i.e., the convergence
behaviour depends entirely on [, |F,({,)|, at least if the product is
bounded or oo. In accordance with the convention mentioned in the
Introduction, this means that all products [17_, |F.({,)| are bounded
either from above or from below (see Example 9.1).

THEOREM 7.1. Let {F,} be a given sequence of Mdobius-transformations
whose fixpoints {,, and n,, are of bounded variation and converge to distinct
points { and n in P'(C). Then

(1) If TI,—o |F(L,)] =0, then all solutions but one converge to (,
whereas the remaining solution converges to 1.

2) I 117 o |F,((,)] =00, then all solutions but one converge to y,
whereas the remaining solution converges to (.

3) IfO<m<TI2_,, |IF (L) <M for all m, p, there is exactly one
solution that converges to (, and one solution that converges to n. If H o [F'(C,)]
converges, then all the other solutions converge to circles {ze P'(C): |(z—{)/
(z—n)|=c} for ceC, ¢#0. If also T1;"_, F\((,) converges, then all solutions
converge to distinct points.

Gill [4] proved the following result, which appears to be a special case
of Theorem 7.1:

THEOREM. If {F,} is a sequence of Mobius-transformations that converges
to an elliptic map F, and if the fixpoints {,,, n1,, of the F, are of bounded variation
and |F(¢,)| <1 for all n, then all solutions except for at most one converge
to{=lim,_ {, if T1, o |F(L,)| =0, whereas if T1°_, |F,((,)| converges,
then there are two solutions that converge to the limits of fixpoints { and n,
whereas the other solutions do not converge.

We shall need Theorem 1.4. For simplicity, we restate Theorem 1.4 in
the simplified version that we shall use here (for k=2, and without the
estimations).

LEMMA 7.2. Let {4,} be a sequence of complex numbers such that T1%_,, |4

is bounded either from below or from above. Let

n= m| n|

M, =diag(4,, 1)+ D, (neN),
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where Y. | D, |/max(1, |,]) < co. Then there exists some sequence of matrices
{J..}, converging to identity, and some sequence of numbers {9,}, 5, = O(||D,|),
such that

J}T—i] Mn‘]n:diag(/ln—'—é)n 1) (HEN)
If > o |D,|l/min(1, |4,]) converges, then we may take 6, =0.
Proof of Theorem 7.1. By (5.1), we have
(F)1(Z)_Cn)71 :F;l(rln)(z_i:n)71 + (1 _F;(nn))(nn_gn)7] (f’le N)

whence, by F'({,) F.(n,) =1 (Lemma 3.1(5)),

F;z(gn)(z_é,n)
(FLI(Cn) - 1)(’7;1 _Cn)il (Z _Cn)

Fn(z)_Cn=1+

so that, for {z,} any solution of (7.1), {y,} ={z,—(,} satisfies

- Fi(8) 2
TR (FAG) =D, —8)

::Fiz())(yn)—i_z:n_énJrl' (72)

+Cn_C}1+l

For simplicity, we assume (=0, = co. The recurrence x,,,=F(x,)
(neN) has, by Theorem 5.1, solutions {0} and {g,} with lim,_,  g,= 0
in either of the cases (1)—(3). In order to see this most easily, notice that

X =F ) X7+ (L= F(n,))(n,— ()7

Set G,(z)=z/(1—zg, ') for neN. Then G, ,F'”’ G, ' has fixpoints 0 and
w0, and (G, F'G, ) (0)=(F") (0) = F,(,) hence G, F' G, (z) =
F!({,)z. In order to apply Lemma 7.2, we use the corresponding matrices:
Set

Fi(C,) 0
! 1 )

<(F;1(Cn) ) ﬂn_gn)il 1

(F(&) =), — L)~ 1>

M= M0+ ) ) .

and
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the matrices corresponding to F'”, F,(z)—{,, and G,, respectively. Then
Nn+anN;l(Z):diag(F;z(Cn)a1)+Dn (nEN)

with D, = O(I¢,— sl max(L, |F)(L,]) since N, —>1 as n— oo
Applying Lemma 7.2 and translating the result back into a result for Mdbius-
transformations we obtain that there exists a sequence of Mobius-transforma-
tions {H,}, converging to the identity and a sequence of numbers {J,}
with > |0, |/max(1, |F;({,)|) < co such that

H}1+1FnHr71(Z)=(F;(Cn)+5n)(z) (”GN)

with d,=0(|(,—{,,]) max(1, |F,({,|). Because {H,(z,)} converges if
and only if {z,} does so, it is sufficient to show that the statements of the
theorem are true for

Zy 1= (F () +9,) 2, (7.3)

IfT17 o |F(C,)] =0, we must show that also [, (|F({,)] +6,)=0. But
this is true, because 37 o (1—|F4(¢,)[—0,) =3 (1= |F)(&,)]) up to a
finite number, since >, |5, | <oco. If [T, |F,({,)| =00 or if 0<m<
[T, 0 F(¢,) <M, we can even take 6,=0. This proves the result,
because the solutions of (7.2) are of the form z,=C-T7_ (F({,) +6,)
for CeC or C= c0. Q.ED

By Corollary 6.5, if the sequence {F,} converges to a hyperbolic or
loxodromic map, there is convergence of all solutions, even if the fixpoints
of the F, are not of bounded variation. However, this is not true in general
if the maps F, converge to an elliptic or a parabolic limit, as will be shown
in Examples 9.3, 9.4, and 9.5. (Obviously, we do not expect all solutions to
converge in the elliptic case, but at most two of them. Still, it may happen
that none of the solutions converge if the fixpoints of the F, are not of
bounded variation.)

8. PARABOLIC BEHAVIOUR

In this section we consider sequences of Mobius-transformations with
fixpoints that converge to the same limit (or Mobius-transformations that
are themselves parabolic). In this case, the asymptotic behaviour of the
solutions is much more sensitive to the coefficients: for instance, in this case
it is not sufficient anymore that the fixpoints are of bounded variation in
order to get a neat convergence result. One way to treat this “parabolic
case” is to try to separate the fixpoints by a suitable transformation: we
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look for maps G, (as neat as possible) such that G, !, F,G,(z) are Mbius-
transformations that have fixpoints converging to distinct limits, and to
which results like those in Sections 4-7 can be applied. We shall not give
an example of this in this section, but the reader can see that exactly this
idea is applied twice in the proof of Theorem 10.1 (where we deal with
matrix recurrences and not with Mobius-transformations, but the idea
remains the same). Another way to treat this “parabolic case” that comes
to mind is to use a similar perturbation method as in the preceding section.
We shall give an example of how one can proceed in this case, but we shall
not go into the matter very deeply. A similar method was used to prove
Theorem 5.1 of [6]. Still another point of view is to study the behaviour
of orbits under a sequence of Mobius-transformations in the complex
plane, somewhat similar to what we did in Section 6. We intend to study
the special case here that the sequence of Mobius-transformations converges
to a parabolic Mdbius-transformation and that there is a region in P'(C)
that is stable under all the Mobius-transformations involved. This point of
view was inspired by the following theorem of O. Perron (in [ 14]):

THEOREM. Consider the linear recurrence of order two given by

Uy = (2=m(n)) o+ (X =no(n))u,  (neN)

with lim,,_, _ no(n)=lm,_, #,(n)=0 and n,(n) =0 and ny(n)—n,(n) =0
Sor all n. Then lim,, _, , u, ,,/u,=1 for all non-zero solutions {u,}.

O

If we put z,=u,,,/u,—1 for all n this amounts to saying that all
solutions {z,} of the recurrence

S ) E Y e/ S
1+z,

converge to zero. Later we shall see that this result is a special case of
Theorem 8.3, and that the condition #,(n) >0 can be replaced by #,(n) € R.
But first we prove the following result:

THEOREM 8.1. Let 4,, 0

[ee)

¢, be complex numbers (neN) such that
* o An converges, > 10,37 _,c,| converges, and > _,c,|= o0,
n—1

whereas ¢, /> ¢, tends to 0 as n — co. Then all solutions of the recurrence

ns

Fn(zn)ZZnJrl (HEN) (81)
with F, given by

Az,

Fuz) == 1

(neN)
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converge to { =0. Moreover, there is one “subdominant” solution {w,} in the

n—1

sense that w, -7 _¢ ¢, = 0 as n — oo, whereas for the other solutions {z,},

n—1

Z,->h_ocy =1 as n— oo, so that in particular lim,,_, (w,/z,)=0.

If we take in Theorem 8, 1,=1, J,=0, and ¢,=c#0 for all n, then
F,=F is just a parabolic map with fixpoint 0. In this case, the solutions
of the recurrence (8.1) are {w,} ={0}, the subdominant solution, and
{z,} ={1/(a+cn)} for aecC. If we let > ,|c,| converge, then by
Lemma 7.2 there exist Mobius-transformations G,,, converging to the identity
map, such that G, !, F,G,(z)=z, so that all solutions of the recurrence
converge to distinct limits, and if we let [],4,=0, and either >, |c,|
converges, or |c,|/(1—]|4,|) is bounded, then by Example 6.4 or by
Theorem 2.1 of [6] all solutions except one of the recurrence converge to
{ =0, whereas the one remaining solution does not converge to 0. This
shows that the conditions on the coefficients of F, cannot be weakened too
much.

On the other hand, if we fix the sequences {4,} and {c,}, Theorem 8.1
essentially gives a condition on the sequence {J,} in order that the solutions
of Theorem 8.1 are asymptotically equal to the solutions of the recurrence
with the same 7, ¢, but with J, =0 for all n. Here also, the condition on
the J, is as sharp as possible (e.g., take F,(z)=(z+d/n(n+1))/(z+1)
which has solutions of the form {a/n} with a a zero of X*> — X —d; see also
Example 9.7).

Proof of Theorem 8.1. We use a perturbation method, as in Theorem 7.1.
Let F°(z)=1,z/(1+ c,z). The solutions of the recurrence

F(nO)(Zn):ZnJrl (nEN)

are {w,} ={0} or {z,}, where

n—1 —1
1 a
Zn:l()""')"nl<z() +Z C/1/10"“'/th> .
h=0

Let {g,} be the solution with g,= oco. Then

h=0

so that g, - Y " _}¢c,—> 1 asn— oo,
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Put G,(z)=g,z/(1 +z) for n>= N with N so large that g, #0 or oo for
n>=N. Then G, '(z)=z/ —z) and G, '\ F”G, has fixpoints 0 and oo,
whereas (G, !\ F\"G,) ( /G,,+l )/1 hence

n+1

(g
0)=

G FOG (z)=1,-2" 2  (n=N).

n+1 n
8n+1

Furthermore, let F,, G, be the matrices corresponding to F, and G,,
respectively:

Then, for some C >0,

Z 1G, 1 FaG,—diag(Z,8,/8u 1 DI <C- Y 10,1/18041] <0
— n=N

by g,>}_4 ¢, — 1. Thus, by Theorem 1.4 (or Lemma 7.2, which amounts
to the same in this case), there exist Mobius-transformations H,,, converging
to the identity map, such that

(G Hy )" FyG H (2) =1, 22 2.

n

gn+l

Thus, (8.1) has solutions {z,(c)} ={G,H,(cAy- -+ -4,_,/g,)} for ceC
and {G,H,(c0)} (which corresponds to ¢ = o0). For ¢ =0 we have z,(0) =

H,(0)/(1+H,0))=0(g,), and for ¢#0 or ¢= oo we have z,(c)/g, — 1
asn— oo. Q.ED

Obviously, it is not essential that in Theorem 8.1 the fixpoints converge
to 0. If the fixpoints converge to { e P'(C), we can always apply a transfor-
mation and consider G~'F,G instead of F, such that the fixpoints of
G~ 'F,G converge to 0. In particular, if the F, converge to some F in
Theorem 8.1, F can be just any parabolic map. Notice that the solutions of
the recurrence behave in a “hyperbolic” way. There is one subdominant solution,
that corresponds to a solution converging to the repelling fixpoint; the
other solutions, having all the same size, correspond to solutions converging
to the attracting fixpoint. The limits of the two fixpoints coincide in this
case. That this is not a mere metaphor is in fact shown by the proof, where
we separate the fixpoints by some transformation, and where the resulting
recurrence (defined by G, !, F,G,) is in fact of hyperbolic type. Similarly,
there are recurrences of type (8.1) where the limit is parabolic and where
the solutions behave “elliptically.” An example is given in Example 9.7,
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where the set of initial values of the solutions that converge is the complement
of a circle in P'(C).

On the other hand, it may also happen that the maps F, converge to
some parabolic map F, and none of its solutions converge (see Example 9.5;
compare also with the remark at the end of Section 7, and Example 9.3,
where it is shown that a similar phenomenon may occur if F is elliptic). We
conclude the first part of Section 8 with an application of Theorem 8.1. The
following result was first proved by Gill [4].

ExaMmPLE 8.2. Suppose that {F,} is a sequence of Mobius-transforma-
tions converging to some parabolic map F. Suppose that for the fixpoints
Ly 1, we have X7y n |8, —C, 1| < oo and X7, 7, —¢,| < co. Then all
solutions of the recurrence F,(z,) =z, converge to the fixpoint { of F.

Proof. We use formula (7.2). Note that it is also valid if F, is parabolic:
in this case F({,) =1, so that », does not appear in the formula. Without
loss of generality we take { =0. In that case, F(z) =z/(1 + ¢z) for some ¢ # 0.
Formula (7.2) now shows that either F, is parabolic or (F/,({,) — 1)(,,—,) ™"
converges to c¢. In particular, >%°  |F,({,) — 1| converges, and Theorem 8.1
can be applied to formula (7.2) with

eu=(=1+F, (), —C) 7,
A =F($) + (L= i) €
0, =0 =i
Note that [, 4, converges since >.*°_, |4, — 1| does. QED

Remark. In addition, Theorem 8.1 shows that for all solutions {z,} of
the recurrence except one lim nz,=1/c whereas there is one solution
{w,} with nw,=0o(1).

n— oo

We now proceed to the second result of this section.

DEFINITION. A tegion UcP!(C) is called stable under a sequence of
Mobius-transformations { F,} if F,(U)< U for all n.

DEFINITION A region UcP!(C) is called disk-like if it is either the
interior of a circle in C, or union of the exterior of a circle and {oo} or a
half-plane in C.

The following result is easily seen to imply Perron’s Theorem:

THEOREM 8.3. Let H be a disk-like that is stable under a sequence of M dbius-
transformations {F,} that converges to some parabolic map F, such that
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F(H)+# H. Then all solutions of the recurrence (8.1) converge to the fixpoint
of F.

Proof. We first show that { must lie on the boundary 0H of H. By
continuity, H must be stable under F (i.e., F(H) < H). Since F is parabolic,
all solutions of the recurrence F(z,)=z,., converge to {, by Section 4.
Hence, { must lie in the closure H of H, because solutions that enter H
never leave it again. Since F~! is also parabolic, and the complement H°¢
of H is stable under F~!, { must lie in H¢ as well. Hence, { € 9H. Because
of this, there is no loss of generality if we assume { =0 and H= {ze C: Rz >0}
(considering G~ 'F, G instead of F, for some suitable Mobius-transformation G).
Then F(z) =z/(1 + ¢z) and the stability of H implies that Re >0 (by RF(ai) >0
for some a € R). We show that: (1) Every solution that does not remain in
an arbitrary neighbourhood U of { must eventually enter H. (2) Every solution
that enters H must eventually enter some neighbourhood V< U of {. (3)
Every solution that enters H n V will remain in H n U forever. Notice that
the first fact allows us to conclude that solutions that do not enter H also
converge to (. Fix a small number ¢>0, and set U={zeC: |z| <¢} and
V={zeC:|z| <&} for & =¢(P/2)?, for positive numbers P<1 and Q
whose values are determined below.

(1) Let {z,} be a solution of (8.1) and suppose that |z, | > ¢ for some
large n, say n>= N (how large N must be will appear in the sequel). We
show that z, . ,, € H for m large enough. Firstly, setting F,(z) =(a,z+b,)/
(¢,z+1), we have

9{( 1 _1>=€R nZ;21+(1_an)Zn_bn.

CZ}1+1 cz CZn(anZn+b}1)

n

Since the expression on the right-hand side tends uniformly to 1 for |z| > ¢’
as n — oo, we take N, so large that it is at least 1/2 for |z,,| > ¢’ and n > N,,.
Further, since Rc >0, there is some number M such that |z| >¢& and
R(1/cz) > M implies ze H. By R(1/cz) > —1/e|c| for |z| >¢ and |z,| > ¢ it
suffices to show that |z, , ,,| >¢ aslongasboth0 <m < Q=[2M +2(e|c|) ']
and |z, | ¢ Hin order to establish (1). Let 0 < P < 1 be such that |a, — ¢, z| > P
for n>=Nj and |z| ¢ H. Further, let N>max(N,, N;) be so large that
|b,| <¢ for n>=N. Then, by F, '(z)=(z—»b,)/(a,—c,z), we have that, as
long as z,,, ¢ H and |z, | >¢,

|Zn/Zn+l|: |F;l(zn+l)/zn+l | <(1 + |bn|/|zn+1 |)/P<2/P

If, on the other hand, z,,, ¢ H and |z, | <¢&', then |z| <2¢'/P. Thus, if
|z,| >¢, z,, ¢ H for n> N, then either |z, ,,|>&P/2)">¢ or z,,,, € H for
0<m<Q.
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(2) We show that solutions that enter H do indeed enter V. If
|z,| <¢&', then there is nothing to prove. If |z, | >¢' for n> N, then, as
above, R(1/cz, ) —R(1/cz,)>1/2, so that for some m >0 we have either
|2, 4m| <& o1 both R(1/cz,40n) =0 and |z, ,,| >¢&". In the former case, we
are ready. In the latter case, we use that |z| >¢&', R(1/cz)>=0 implies
|1 +cz|>1+¢" for some ¢” >0, hence |1 +c¢,z|>1+¢"/2 for =N, > N.
This implies that for R(1/cz) >0, |z| >¢ we have

a,+b,/z

IF)A < |

<1—¢"/4

for n= N, large enough. From this inequality it follows that if z, € H, then
indeed z € V for some m = 0.

n+m

(3) The only thing that can still go wrong at this stage is that z, can
leave V' and become large before R(1/cz,) >0 again. But if |z, | >¢’, then
R(1/cz,) = —1/'|c|, so that R(1/cz,, ,,) =0 for some m< R=[2(¢ |c|)~"'7.
On the other hand, if ze H, |z| > ¢, and n is large enough, then

a}] +b}’l/z

M/
(c,z+1) <

|F.(2)/z] <

for some M’ because the denominator of the right-hand term is bounded
from below for ze H. Lastly, if |z| <¢', and & is small enough, then
|F,(z)| <2¢', for n sufficiently large. Hence, if |z,,| <&’ for some n>= N;,
then |z, ,,| <2&' (M) for all m > 0. Q.ED

Let, for neN, E, be the set {z=z,:z, € H} of initial values of solutions
{z,} of (8.1) that lie in H from index n on. It is clear that E, > E, D E,...
and all E, are open sets in P'(C), since E,=(F,_, ---Fy) ' (H) (neN).
The union of the sets E, consists of the initial values of the solutions of
(8.1) that enter H at some stage. The intersection (), E;, of the comple-
ments is closed and not empty, since E, can never be the whole P!(C) for
any given n. This proves that there are solutions that never enter H—but
we have seen that nevertheless these solutions converge to { =0—and the
set & of their initial values is either a closed disk or a single point. In fact,
both possibilities occur. For the case that & is a single point let, for all n,
F, be the constant parabolic map F(z)=z/(1 + cz) with Re > 0. It is clear
that H= {zeC: Rz >0} is stable under F. Moreover, all solutions are of
the form {1/(a+cn)}, or {0}. It is obvious that all solutions enter H
except for {0}, which remains on the boundary. See Example 9.8 for the
case that & is a closed disk.
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9. EXAMPLES

In this section we have collected a number of examples most of which
are meant to show that the theorems we proved do not hold generally, but
that the additional conditions we imposed are, in a sense, natural and cannot
be broadened too much. For every example we shall refer to the section or
the theorem to which they belong.

(1) The first example shows that our convention that [] ,4,=0
implies that []2_, A, is bounded from above for all m, p is a natural one.
In fact, we have a recurrence that satisfies in all respects the conditions of
Theorem 7.1(1), except that []?_, 4, is not bounded for all m, p. We
can see that Theorem 7.1, which says that all solutions must converge, is
not valid. The example belongs to Theorem 7.1, but also to Theorem 1.4,
because it shows that the condition on the boundedness of the numbers
[15_,, la;(n)/a;(n)| is not a mere caprice of the proof. Consequently, it also
belongs to Theorem 1.3.

ExampLE 9.1. Consider the recurrence

Zyi1 =4z, + b, (neN), (9.1)

n<n

where the numbers A,, b, are defined as follows: Setting m,=e¢ " and
v, =i for i odd and m,=e"” 2" y, =i for i even (i>1) we let 1, =m; for
n,_,<n<n, where n,=v,+ --- +v,. Further, b, =1/i* for n=n,—1 (i odd)
and b, =0 otherwise. Clearly, >, |b,|, >, |4, — 4, 1| converge, and the
fixpoints co and b,,/(1 — 4,,) are of bounded variation. Then m}i = e~ for i odd
and m)i=e'~? for i even, so that for i >0

Ty o R 77 R0 S
ity — 1 Ao =m) myi=e

and for i>0

_ v Vi ,—1
,1 ....)bo_mll.....mzf_r_e .

ny—1

This shows that [ ,4,=0, but that []?_, 4, is not bounded. For
{z,} #{o0} a solution of (9.1) we have

n—1
Zu=An_1" Ao <Zo+ Y by - '}vo)1>'
h=0
Since the choice of z, obviously does not influence the convergence of the
solution, we take z,=0. Thus, for j >0,

N | . 1
—pJ - 31—227
ny=e’ ) 2i—1)*¢ 2j—1)7°¢

i=1

2j—2
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and the right-hand side clearly converges to oo as j— oo. On the other
hand,

Jj+1 1

—3 —1
Z”ZI+1 ’ Z (21—1) ¢

3i—2

which converges to zero as j — oo. Namely, for L < ; fixed,

O< 73171 3l+1+ e3(l j)’
Prayn < Z 2l+1 GL+1f =

where the first term on the right-hand side tends to zero as j — oo and the
second term is smaller than 2/(2L 4 1)* for j > L. Thus we see that none of
the solutions (except for { oo} which is fixed by construction) converges.

(2) The second example shows that it may happen that F, converges
and its fixpoints converge, but the solutions converge to points that are not
equal to the limits of the fixpoints. By Lemma 4.1(4) this can only happen
if the limit of the F,, is the identity map.

ExampPLE 9.2. Let b,, ¢, be complex numbers such that b, - 1 and
c,=o0(b,—1) as k - co. Define Mobius-transformations Fy, G, by

b
F2)=biz  Gz)= 2tk (keN).
¢z + by

Then F; has fixpoints 0, co and the fixpoints of G, satisfy ¢,z + (b, —1) z
—b,.c,, =0, hence these converge to 0 and oo too. Further, G, F,(z) =(z + ¢;)/
(crz+1) has fixpoints 1 and —1 and (G, F)' (1) =(1—c,)/(1 + ¢;). Since
moreover F, —id we see that the recurrence J,(z,) =1z, ., with J,, =F,,
Jok 1= Gy (k=0) has two solutions that converge to 1 and —1. If we now
take ¢, =1/(k+ 1), then all solutions except one converge to 1, and if we
choose ¢, =i/(k+1), then none of the solutions converge, except for the
two that converge to 1 and —1. This follows from Theorem 7.1, but also
from the following identity, which follows from Lemma 3.1(6):

22 (" 6,my (1)) 2=
22,1+1_ o ht h +1

(3) Next we give an example of a sequence of Mdbius-transformations
{F,} that converges to an elliptic map F, but where the corresponding
recurrence F,(z,)=z,,, has no converging solutions (see Section 7).
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ExampPLE 9.3. Let a, (k>=0) be imaginary numbers, converging to 0,
and such that 3  ia, = co. Set ¢, =2a,/(a; +1). Then ¢, » 0 as k — o
and ¢, is imaginary. Let

Z—Cp Z+ ¢y

—C/(Z—l

Fy(z)= Foyin(2)= (k=0).

CkZ—l’

Then F,, has fixpoints a,, a, ', and F’y(a,)= —1. Similarly, F,,,, has
fixpoints —a,, —a, ', and F’, ,(—a,)= —1. Further,

(1+c3)z—2¢,
—2¢,z+(1+¢3)

Hi(z)=Fy,  Fylz) = (k=0)

has fixpoints 1 and —1 and H,(1)=((1+cu)/(1—cp)*=((1+a,)/
(1 —ay))* so that |[H}(1)] =1 and [[_, H}(1) does not converge (here we
use that > ,ia,= o0). Hence the recurrence H,(z,) =2z, has only two
converging solutions, {1} and { —1} (by Theorem 7.1 or by an argument
similar to that used in Example 9.2).

Since the F, converge to F(z)= —z we see immediately that the
recurrence F,(z,)=z,,, has no converging solutions at all. For the case
that the Mobius-transformations converge to an arbitrary elliptic map
F(z) =0z with |0| =1, consider the recurrence J,(z,,)=z,,, (neN) with J,
defined as follows.

Let N,, N,,.. be natural numbers, and 6, roots of unity such that
0yx= —1for all k and 0, — 0 as k increases. Let G,, be M6bius-transforma-
tions defined by

Goy(z) —a; Z—day G 1(2) +ay Z+ag

—1°

sz(z)*ak_l_ szak G2k+l(2)+ak_l_ kZ‘*‘ak_].

Then G3f=F,., G3, ,=Fs ., and G,(z) - 0z. Define J, =G, for n=
2N+ -+ +2N_+i, J,=Gy .y for n=2N,+ --- +2N,_+ N, +i
(0 <i< Ny). Then J,(z) converges to 0z and J,(z,) =z, has no converging
solutions.

(4) Here is another instance of a sequence of Mdbius-transformations
converging to some elliptic map. We present two variants: in one case all
solutions except one converge, and the remaining solution converges to a
circle. In the second case, all solutions except one do not converge to a
point, but to a circle.
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ExaMpPLE 9.4 (A). Let 0<¢ <2n be some positive real number and
EeC. Set A,=(1+1/n)e? and &,=E+37, (1/h) e D? Now consider
the recurrence

Zn+1:Fn(Zn):}'nZn+(l_ln) én (n>0)

F, converges to F(z)=e"z4 (1 —e'*) &, which is an elliptic map. The
general form of the solutions is

z, =&, +ne”(c—1/n) (n>0),

where ¢ e P'(C), as can easily be ascertained. For ¢ #0, z, converges to oo,
but for ¢=0, z, =&, — e, which does not converge to a single limit, but
converges to the circle {zeC: |z —¢&| =1}.

ExaMpPLE 9.4 (B). Let 0<¢ <2n be some positive real number and
EeC. Set A,=ne”/(n+1), and &, =E+37 ., (1/h)e™. Consider the
recurrence

Zn+1:Fn(Zn):/1nZn+(l_/1n) é’n (n>0)

As in (A), F, converges to F(z) =ez + (1 —e™) &, which is an elliptic map.
The general form of the solutions is

1 .
z,=&,+=e"(c+n)  (n>0),
n

where ce P!(C). For all ceC, (z,—¢&,) e™ converges to 1. In particular,
all finite solutions converge to the circle {zeC: [z —¢&| =1}.

(5) An example similar to Example 9.3 can be given for a sequence of
Mobius-transformations F, converging to a parabolic map F, where none
of the solutions of the corresponding recurrence converge (compare with
Section 8).

ExampLE 9.5. Let 0 <N, <N,.. be an increasing sequence of natural
numbers. Let a, =tan(n/2N,) and b, =tan(n/4N,) (k=0). Then (1 —ia,)/
(1 +iay)=e ™Mk, (1 —iby)/(1 +iby) =e ™*, and (a,/b,) — 2 as k— 0.
Define Mobius-transformations F,, G, by

z+ia z+ib}

Py =" Gl =7, (keN).

Fy has fixpoints a,, —a, and Fi(a,)=(1—ia,)/(1 +ia,) so that FYxz)=
ai /z. Similarly, G, has fixpoints + b, and G;"«(z) = b} /z. Hence, FyrGi x(z)
= (a,/b,)? z which converges to 4z. Define the recurrence J,(z,) =z, ,; by
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J, =G, for n=3N,+ --- +3N,_,+1i,
Jn=Fk fOI‘ n=3N1++3Nk,]+2Nk+]

for 0<i<2N, and 0 < j< N,. Then J,(z) - z/(iz+ 1) where the limit is a
parabolic map with fixpoint 0. Since FYxG;Vi(z) —> 4z (k — o) the solutions
of the recurrence defined by the J, can only converge to 0 and oo, but F}
interchanges 0 and co. Hence there can be no converging solut10ns

(6) The next example is inspired by Theorem 6.2, which says that if for
any neighbourhood of a point { the recurrence F,(z,)=z,,, has some
solution that lies in that neighbourhood almost always (i.e., for all but
a finite number of indices), then there is a solution of the recurrence that
really converges to { provided that there is also some solution that lies
almost always outside some neighbourhood of {. We show here that the
latter condition cannot be dispensed with.

ExampLE 9.6. Let, for j>1, Mobius-transformations G; and H; be
given by

—1 o |
G(2)= 1Z+jz’ Hj(z)=(]/(]J;_);(ZZ+)'

Then H;G;(z)=(j/(j+ 1)) zand Fi(z) =G;H; _,G,_,---H,G\(2) =(z/(j— 1))/
(1+2z). Fi(z) converges to —1/(1+z). Let {g,} be a decreasing sequence
of numbers 0 <¢, <1 that tends to 0 as k > oo, and define numbers z{*) =
1/¢, — 1 that are to be the initial values of solutions {z!*'} of the recurrence

n

Jn(Zn)_Zn+l Wlth J2/1 I_Hh’ J2/172=Gh (h>0) ObViOUSlya Z(Zln) 1=

F,(z)=(1—¢)/n—¢,and z5) =z /(n+ 1) so that |zX) | <¢, for m large
enough. But there is no solutlon that converges to 0: For suppose there is
one, say {w,}; then w,, _;=F,(wy)=(wo/n—1)/(1+w,). This can only

converge to 0 if wy=oco. But in that case, w,,=w,/(rn+ 1) = 0o, which
contradicts the assumption that w, converges to zero.

(7) Here we give an example of a sequence {F,} of Mobius-transforma-
tions with a stable region H and converging to a parabolic transformation F.
The recurrence F,(z,) =z, has solutions that converge if and only if the
initial values do not lie on a circle in P!(C). Theorem 8.3 does not apply
here because F(H)= H here (and not a genuine subset of H). This shows
that the condition that F may not map H onto itself cannot be dispensed
with.

ExaMPLE 9.7. Let F,(z)=(z+c¢/(n*+n))/(z+1) (n>0). The recurrence

Fn(Zn):Zn+l (n?l)
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has two solutions {a/n} and {b/n} with a, b the zeros of the polynomial
X?— X —c¢, as can easily be ascertained. If ¢ is real and ¢ < — 1/4, then a,
b are not real and b=a. It thus follows that, for {z,} a solution of the
recurrence,

Zn+1_a/(n+1)_o( Zn_a/n
Zn+1_b/(n+1)_ nZn—b/I/l

(n>0),

where a,, = (c¢/a —n)/(c/b —n) (this can be seen by calculating the image of,
say, z=0 under F,). Hence,

z,—ajn

e
b

n—l""'(xOZC@n (n>0)

for some constant C, so that we find for the general solution

a—bCoO, 1
zZ,= 1-co, n (n>0). (9.2)
Note that |@,| =1 and that o, — | =d/n(1 4 o(1)) for some imaginary number
d#0. Hence, 0, does not converge. Now consider the solutions themselves.
For |C|#1 the denominator in (9.2) is bounded from below, whence z,
= O(1/n). On the other hand, if |C| =1, then for infinitely many values of n,
|C~!'—@,| <C,/n for some C;>0 (this follows from the fact that a, — 1=
d/n(1 +o0(1))). Hence z, cannot converge in this case (but nevertheless it is
“most of the time” very close to 0, as follows also from Lemma 4.1(1)). Notice
that there are two stable regions: the upper and lower half-plane. The
solutions that do not converge lie on the real axis.

(8) In Section 8, Theorem 8.3, we studied the case where the maps F,
converge to a parabolic map F and that there is a stable region H such that
F,(H)<H for all n and F(H)# H. We saw that in this case all solutions
of the recurrence defined by the maps F, converge to the fixpoint of F, but
that either there is exactly one solution that never enters H or the solutions
that never enter H have their initial values in some closed disk. An example
of the first case has already been given at the end of Section 8: take all F,
equal to F. We now give an example of the second case.

ExampPLE 9.8. Let ¢ >0 bea given real number andset 1,=(n—1)/(n+1)
and F,(z) =(4,z)/(1 +cz) (n>1). It is clear that F, converges to a parabolic
map and that the half-plane H={zeC: Rz>0} is stable under all F,.
Also, F(H) # H. Hence we are in the situation studied in the second part of
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Section 8. It can easily be checked that the recurrence F,(z,) =z, ., (n>1) has
solutions

1 c \ 7!
Z”zn(n—l)<A_n—1> (n>1)

for AeP'(C) (A = oo corresponds to the fixed solution {z,} = {0} ). Hence
Rz, '=(RA)-n(n—1)—cn and {z,} enters H precisely if RA>0. The
initial values z, =1(A4 —¢) ' of the solutions that do not enter H lie in the
complement of the region R((1/2z)+ ¢) >0 which is precisely the closed
disk {zeC: |z+ (1/4c)| < 1/Ac}.

10. LINEAR SECOND-ORDER RECURRENCES

In this last section we apply some of the results obtained above to study
the asymptotic behaviour of the solutions of linear second-order recurrences

Uy o+ pn), +qn)u, =0 (neN), (10.1)

in particular those that have coefficients which are sums of fractional powers
n=% (a;=0) of n plus a small perturbation term of order O(n~27%). In
particular, the results obtained will hold if the coefficients have asymptotic
expressions which are power series in fractional powers of 1/n.

We shall see that in this case, if lim,_,  p(n)=p and lim,,_,  ¢(n)=¢q
exist and p, ¢ are not both zero, there are always solutions {u,} such that
u, , 1 /u, converge to the zeros a,, a, of the polynomial X*+ pX + ¢. In the
case that the zeros have distinct moduli, this is exactly the Poincaré—Perron
Theorem (see the remark below Theorem 1.2).

The case that the eigenvalues are distinct (but possibly having equal
moduli) is covered by Corollary 1.6, because in this case the zeros a,(n),
ay(n) of the polynomials X?+ p(n) X +¢(n) are also sums of fractional
powers of 1/n plus some term of order n2~¢ Hence the conditions of
Corollary 1.6 are satisfied. Because of this, we can limit ourselves to the
case that the zeros of y(X)= X?+ pX + ¢ are equal and non-zero. Before
we proceed, we recall two important notions:

DEFINITION. A non-zero solution {u,} of a linear recurrence (10.1) is
subdominant if lim,,_,  u,/v,=0 for all solutions {v,} of (10.1) that are
linearly independent with {u,}.

DEFINITION. A real, non-zero solution {u,} of a linear recurrence (10.1)
oscillates if u,u, , , <0 for infinitely many 7.
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We shall see that in the case that the zeros of the characteristic polynomial
are equal and non-zero, two different situations can occur:

(1) There are exactly two solutions {u'"}, {u'?} such that the
quotients u'”, | /u'? converge to the zero a of y, and lim,, _, . |[u'"/uP| =1,
but lim, _, , u'"”/u'? does not converge. Further, if p(n), g(n) € R, then all

real solutions {u,} oscillate. This we shall call the elliptic case.

(2) For all non-zero solutions {u,} the quotients u, ,/u, converge
to o and there is a subdominant solution {u!"}. This will be referred to as
the hyperbolic case.

In order to make things more simple we shall apply a transformation to
(10.1) so that the recurrence depends only on one variable sequence, but
without losing information about the solutions of the original recurrence.
This can be done in the following manner: Setting v, =u,, [ [/ _% (—2/p(h))
and C(n)=1—4g(n)/(p(n) p(n—1)) for n= N, where N is so large that
p(n) #0 for n> N —1 we have that {u,} is a solution of (10.1) if and only
if {v,} is a solution of

Upr2 =20, 1 +(1=C(n))v,  (n=N). (10.2)

It is clear that the type of the recurrence (elliptic or hyperbolic, as defined
above) does not change if we replace (10.1) by (10.2). Moreover, if p(n),
q(n) are converging power series in n~ % the same holds for C(n). Note
that, in the case that the zeros of the characteristic polynomial of (10.1) are
equal and non-zero, lim,_, ., C(n)=0 and the zero of the characteristic
polynomial X*>—2X+1 is 1. We have the following result:

THEOREM 10.1. Let C(n)=a,n'+ --- +a,n’c+ O(n=2"°) for ay, .., a,
eC, =2<ji< -+ <j;<0, and £¢>0. Then the recurrence (10.2) is of
hyperbolic type if

(1) lim,_ . n*C(n)=deC and d is not a negative real number < —1/4.
In this case, if d# — 1/4, there are two solutions {v'"}, {v'?'} with

)
lim n<Ul’)’(J,T)1 —1>=r,. (i=1,2) (10.3a)

n

with r,, r, the zeros of X*— X —d.
Further, if n°C(n)—>d# —1/4 and Y.;"_, |nC(n)—d/n| converges, then

there are solutions {v"}, {vP} with lim,_ v /ni=1 (i=1,2) with
ri, I the roots of X*—X—d. If d=—1/4, and ¥"_,logn |nC(n)—d/n|
converges, then there are solutions {v"}, {v?} with lim, _, v\ /n'?=1

and lim 0@ /n'?logn=1,

n— oo n
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(2) o R/ C(n)=co where the branch of the square root is chosen

such that R/ C(n) = 0. This is the case when either a, is not a negative real
number or when a;, <0 and a, ¢ R for some 1 <I<k with j,—j, /2= —1. In
this case, we have solutions {v'"}, {v'>} with

p® 1 .
lim < nl —1>. —(—=1) (i=1,2). (10.3b)
n— oo Uill) C(n)
In particular, lim,,_, v\ /v'? =0.

In the remaining cases, (10.2) is of elliptic type. In the case that n*C(n) — o,
there are two solutions {v"}, {vP} such that (10.3b) holds. If n*C(n) — d
< —1/4, then there are two solutions {v'V}, {v?} such that (10.3a) is valid
(with ry, r, the zeros of X* — X —d). In both cases, lim,,_, , v'" /v'? does not
converge, but lim,,_, , |v'" /v?| converges

If moreover 3.7_, |nC(n) — dfn| converges, then there are solutions {v'"},
{2} with lim,,_, , v /n"i=1 (i=1,2) with ry, r, the roots of X>— X —d.

Lastly, if C(n)e R for all n, then the real solutions {v,} of (10.2) oscillate

in the elliptic case, but not in the hyperbolic case.

We need a simple, but useful lemma that connects the behaviour of u,, , | /u,,
to the behaviour of u, /v, for {u,}, {v,} solutions of a linear recurrence.

Lemma 10.2. Let {u,}, {v,} be non-zero solutions of a linear second-
order recurrence (10.1). For every non-zero solution {w,} there exists a constant
C such that

M}n+l/‘/vn_l’anrl/l’ln _
M/n+1/m)n_UnJrl/vn

v
C-—=.
ul’l
Proof. Subtracting (u,,,,+ p(n)u, ., +qn)u,)w,,, =0 from (w,, ,+
pm)w, +q(n)w,)u,, =0, we obtain
Uy 4 2Wh i1 _un+1M}n+2:q(n)(unﬁ—lwn_unl/vn-%—l) (I’le N)

so that

n—1

un+1vv)1iwn+lunzc'l_[ LI(h) (HEN),
h=0

where ¢ depends only on {w,}, {u,}. Hence,

<

Wn+l/wn_un+l/un_m;nJrlun_WnunJrl Ui C

- —C.2%.  QED.
M}n-¢—l/Wrt_Un+1/1)n Wyt1Uy = WyUyq1 Uy

n

<
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Another result that we shall use in order to decide when real solutions
of (10.2) oscillate is the following lemma.

LemMA 10.3.  Consider the recurrence

z,+ C(n)
Zn+l:ﬁ

(neN) (10.4)

with C(n) € R for all n and lim,, _, ., C(n) =0. The solution {z,} are of the
Sform z,=v, /v,—1 for {v,} #{0} solutions of (10.2). If (10.4) has a real
solution that converges, then all solutions converge to 0 and (10.2) has a sub-
dominant solution, but no oscillating solutions. If (10.4) has no converging
solutions, then all real solutions of (10.2) oscillate.

Proof. Equation (10.4) is equivalent to
ZnZpn+1 +Zn+l —Zn— C(l’l) =0

and if we set z,=v,,,/v,— 1, then it follows immediately that {v,} is a
solution of (10.2) and conversely. If {z,} is real and converges, it can only
converge to 0. The fact that all solutions converge in that case, and that
(10.2) has a subdominant solution, is Proposition 2.2 and Corollary 7.2
of [7]. Suppose that the real solutions of (10.4) do not converge. Since
Z,.1<z, unless either z2< C(n) or z,< —1 (or z,= o0, which implies

z,_;=—1), it follows that we must have z,, < —1 for infinitely many n. If
z,< —1, then v, ,/v,<0 for the corresponding solution {v,} of ( 10.2),
hence v, and v, ,, have unequal signs. If z,= —1, then v,,,=0 so that

V,42+(1—C(n))v,=0, hence v, and v, ,, have unequal sign. In both
cases, we see that {v,} oscillates. On the other hand, if all solutions of
(10.4) converge then the real solutions of (10.2) do not oscillate. This
follows from the fact that all solutions {z,} of (10.4) must necessarily
converge to 0. Hence z,+1=v,,,/v, does not change sign for n large
enough. Q.ED

Proof of Theorem 10.1. We consider the associated matrix recurrence
M,x,=x,,, with M, given by M, = (7 “)~"). Then set

G _<~/C(n) ,/C(n)> A—<1 1>

"\ -1 1) S\ 1)

Then the matrix recurrence G, A 'M,AG,y,=,,; (neN) has
solutions

1 . <U}1+1 *Un(l +\/ C(")))

Vpi1 = 0,(1 =/ C(n))
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for {v,} solutions of (10.2). It follows that the corresponding recurrence of
Mobius-transformations

CHZ + bn

%+1=FJ%J=CJMZ+I (neN), (10.5)
where
1—./C(n) Cn+1)/C(n)—1
=—~Y ="  and b =-—
K 1+./Cn) . " Cn+1)/C(n)+1
has solutions {z,} where
o (/o =) (/T -1 106)

(0ps1 /o= 1) - (1//Cn) + 1

We apply Theorem 7.1 to (10.5). Note that (1 —¢,)/./C(n)—2 and b, =
—j,/An+0O(n~'7?), for some number & >0. Hence, if n>C(n)— oo, the
fixpoints of F,(z,), which are the roots of the polynomials b,c, X+ (1—¢,)
X—b,, tend to 0 and co. They are also of bounded variation, since b, and
¢, are, like C(n), finite sums of (fractional) powers of 1/n plus some part
that is O(n—27*), and so are the fixpoints themselves. If ¢, is the fixpoint
of F, that converges to zero, we have

1—s, here /<1 —c,,>2+ 4c,b?
. w S, = .
1+s, l+c, (1+¢,)?

This can be seen most easily if we realize that F/({,) is a quotient of the

F(C,)=

L‘Il
c,b,

hl”) corresponding to F, (see the final
paragraph of Section 2). Thus, by Theorem 7.1, (10.2) is of hyperbolic type,
with all solutions of (10.5) converging to one fixpoint, and the remaining
solution converging to the other fixpoint, precisely if [],°_, |F.({,)| =0 or
o0, hence if 377, Rs, = + 0, by |F({,)]*=1—(4Rs,/|1 +5,|?). Relation
(10.2) is of elliptic type if |F;,({,)| converges, hence if > ° | Rs, | converges
(case (3) of Theorem 7.1). In that case, two of the solutions of (10.5) converge
to 0 and oo, whereas the other solutions converge to circles {z € C: |z| =c}.

Furthermore, if n*C(n) — oo as n— oo, then j, > —2 and

two eigenvalues of the matrix (

5, =</Cn) + 2 /T6n* + O(n 2 )
:\/@(1 +0(n=2""y)
:mﬁ- O(n=2?),



SOLUTIONS OF LINEAR RECURRENCES 55

hence >~ , Rs, converges (diverges) precisely when > 7> R /C(n) does
so. Finally, (10.3) follows from (10.6) and the fact that there are (at least)
two solutions of (10.5) that converge to 0 and oo. Let {w,} be any solution
of (10.2). Then, by Lemma 10.2, for some constant C,

(v o) = 1) - (13/C(n)) = (W, 1 /wa— 1) - (1/3/C
( 5124)—1/0(2) 1) 1/\/ wn+1/wn_ : l/\/ I’l

=c.”7]) (neN). (10.7)
v}?
Thus we see that in the hyperbolic case, where (w,, ., /w,—1)-(1 /,/ n))

converges to 1 for {w,} linearly independent with {v;”} 11nr1,Hoc v, /v(z’

=0. This follows also from the fact that [1>_, |(1 —/C(n))/(1+/C(n))| =
if >y R/ C(n)=oo. In the elliptic case, for {w,} not a scalar multiple
of either of the {vﬁ,’)}, the left-hand side of (10.7) does not converge to a
point, but to a circle {ze C: |z] = C'}, hence the same is true for the right-
hand side. We can choose {v!"’} such that C=C".

Similarly, if n?C(n) =d + o(1), then j, = —2 and

snzfl}l/“(l + O =Jd+1/d-n "+ 0(1/n"1 %),

hence we are in the elliptic case if d < —1/4 and in the hyperbolic case for
all other d, except for d= —1/4, in which case the fixpoints of (10.5)
converge to the same point, so that Theorem 7.1 cannot be applied (we
recall that the limits f;, f, of the fixpoints of (10.5) are the zeros of the

polynomial X2+4\/c;’X— 1). By Theorem 7.1, we have solutions {v'"},
{v'?} such that

L ><1/m>—1=ﬁ (i=1.2)
e (v o)) = 1) - /m)+1

It follows that

. o' 1+ .
11m<g)11> /Zz f =r, (i=1,2),

n— oo

r,, 1, being the roots of X?— X —d.
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The remaining assertions concerning the case that lim, ,  n’>C(n)=d
must be treated separately. We consider the matrix recurrence

1 C(n)

xn+1=A1MnAxn=<1 1

>x,, (neN) (10.8)

with M,, 4 as above, and which has solutions x,=("+!"") for {v,}

solutions of (10.2). First let d# —1/4. It follows from a straightforward
computation that for

(2)

(1)
H,1=<g" o

1 1>, ¢O=rn  (i=1,2n>0)

with r,, r, the roots of the polynomial X> — X —d, we have

1 4 1
< In(n+1) H,=H,, -diag 1+I’71’1+}’72 (n>0).
1 1 n n
Hence, if Zn,l |[nC(n)—d/n| < oo, then, by |H,|=0(1), |H, '|=
O((det H,) ") = O(n),
HH'IA'MnAHn=diag<l+r1,1+r2>+Dn (n>0).
n n

with |D,|=n-O(C(n)—d/n(n+1)). Applying Lemma 7.2 we find a
sequence {J,} converging to the identity matrix 7 such that

n+1 n+l

J-VH' A'M,AH,J, —diag<l+rl,1+r2>.
n n

Let the solutions {x!”} of (10.8) be defined by x'”=H,J,(e,) (i=1,2).

Then
(i) A (i) n—1
() — U!1+l_v}1 >_< /n( > 1 h
X,, < ﬁgli) 1 +0( hljl ( +V,/

Hence, 6'” /n" converges to non-zero numbers ¢; (i =1, 2). Setting v\’ =8'" /¢,
for i=1, 2 we find the desired result.

We proceed similarly for the case that d = —1/4. In this case, as is shown
by a straightforward computation, we have

<1 dn(n+1)

P >Hn=Hn+1~diag<1+g£,‘>,1+g;2>) (n>0),
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where now
(1)

(2)
g, g 1
H =(°" n (= _—
n < 1 1 >’ gn 2n5

(2)_1+1<n21 1 >1 (n>0)
o T\ 2 k+ 12 '

In this case, |H,|=0(1), |[H, "||=0((det H,) ')=O(nlogn). Hence,
it ¥  nlogn|C(n)+1/(4n*)| < oo, then we can, by Lemma 7.2, find a
sequence of matrices {J,} converging to identity and such that

J, L H L A'M,AH,J,=diag(1+ g, 1+ g'?) (n>0).

n+1 n+1

The final part of the proof is similar to the case that d+# — 1/4.

We show that if C(n)e R, in the elliptic case the real solutions oscillate.
Here we use Lemma 10.3, together with the fact that (10.2) has a subdomi-
nant solution if and only if lim,, , , u,/v, exists (or is oo) for all non-zero
solutions {u,}, {v,} of (10.2). However, in the elliptic case, as we have
seen, lim,, _, ., (v"/v'?)) does not converge. Hence, by Lemma 10.3, the real
solutions of the recurrence (10.4) diverge and the real solutions of (10.2)
oscillate. Q.ED

The case that >2°_ | C(n)| converges was already treated by Coffmann [1].
The requirement that if #*C(n) —>d= —1/4, then Zn,l nlogn |C(n)+
1/(4n*)| must converge, instead of >, n |C(n)+ 1/(4n?)|, as is the case

for d# —1/4, is really necessary. This can be seen from the following
fact (Corollary 5.3 of [7]):

THeoREM 10.4. Consider the recurrence

z,+C(n)
1+z,

z (n=ny) (10.9)

n+1=

for C(n)eR, and suppose that lim,_, , C(n)=C exists. Set log;n=
log(log; _ n), log, n=1log n. Then, if there is some number ¢ >0 such that

2

J
Cm)> —4 Y. (nlogn---log;n)~>+e(nlogn---log,n)

2

J
Cn)< —3 ) (nlogn---log;n) >—¢&(nlogn---log,n) 2

then all real solutions of (10.9) diverge.
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In particular, if C(n) = —1/4n*+ ¢/n” log® n, then the solutions of (10.9)

converge if c> —1/4, and diverge for ¢ < —1/4. On the other hand, as we
have seen in the proof of Theorem 10.1, if {v,} is a solution of (10.2), then
{z,} ={v,.1/v,— 1} is a solution of (10.9) (by Lemma 10.3), and the real
solutions of (10.9) converge in the hyperbolic case, and diverge in the
elliptic case. Notice that Theorem 10.4 also shows that if the C(n) are real,
then the real solutions of (10.2) oscillate in the elliptic case.

12.
13.
14.

15.

16.
17.
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